Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/109224
DC FieldValueLanguage
dc.contributorDepartment of Industrial and Systems Engineeringen_US
dc.creatorGeda, MWen_US
dc.creatorTang, YMen_US
dc.creatorLee, CKMen_US
dc.date.accessioned2024-10-02T02:36:17Z-
dc.date.available2024-10-02T02:36:17Z-
dc.identifier.issn0952-1976en_US
dc.identifier.urihttp://hdl.handle.net/10397/109224-
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.subjectArtificial intelligenceen_US
dc.subjectHealthcareen_US
dc.subjectMedical roboticsen_US
dc.subjectMeta-analysisen_US
dc.subjectOrthopaedic surgeryen_US
dc.titleApplications of artificial intelligence in Orthopaedic surgery : a systematic review and meta-analysisen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume133en_US
dc.identifier.doi10.1016/j.engappai.2024.108326en_US
dcterms.abstractThe integration of artificial intelligence (AI) has the potential to revolutionise the pre-operative, intra-operative and post-operative stages of orthopaedic surgery. We conduct a systematic review and meta-analysis to investigate the role and effectiveness of AI in Orthopedic surgery. We compare the outcomes of AI-assisted and conventional surgery by focusing on the implementation of AI tools in the prediction, diagnosis and robot-assisted surgery. The results of the review and meta-analysis showed high accuracy in prediction outcomes, diagnosis and classification based on medical image analysis. However, the meta-analysis revealed longer operative times with robot-assisted surgery. Additionally, while robotics achieved enhanced implant positioning accuracy, definitive advantages in functional outcomes over conventional surgery were not observed. Future work should focus on extensive follow-up to validate the long-term advantages of AI-assisted procedures in orthopaedic surgery.en_US
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationEngineering applications of artificial intelligence, July 2024, v. 133, pt. D, 108326en_US
dcterms.isPartOfEngineering applications of artificial intelligenceen_US
dcterms.issued2024-07-
dc.identifier.eissn1873-6769en_US
dc.identifier.artn108326en_US
dc.description.validate202410 bcchen_US
dc.description.oaNot applicableen_US
dc.identifier.FolderNumbera3218-
dc.identifier.SubFormID49797-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextInnoHK Research Clustersen_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2026-07-31en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2026-07-31
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

25
Citations as of Nov 24, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.