Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/109211
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Computingen_US
dc.creatorZhang, Ren_US
dc.creatorGuo, Sen_US
dc.creatorLi, Pen_US
dc.date.accessioned2024-09-24T04:20:54Z-
dc.date.available2024-09-24T04:20:54Z-
dc.identifier.isbn979-8-4007-0172-6en_US
dc.identifier.urihttp://hdl.handle.net/10397/109211-
dc.descriptionWWW '24: The ACM Web Conference 2024, Singapore, Singapore, May 13-17, 2024en_US
dc.language.isoenen_US
dc.publisherAssociation for Computing Machineryen_US
dc.rights© 2024 Copyright held by the owner/author(s).en_US
dc.rightsThis work is licensed under a Creative Commons Attribution-NonCommercial-Share Alike International 4.0 License (https://creativecommons.org/licenses/by-nc-sa/4.0/).en_US
dc.rightsThe following publication Zhang, R., Guo, S., & Li, P. (2024). GradFilt: Class-wise Targeted Data Reconstruction from Gradients in Federated Learning Companion Proceedings of the ACM Web Conference 2024, Singapore, Singapore is available at https://doi.org/10.1145/3589335.3651514.en_US
dc.subjectFederated Learningen_US
dc.subjectGradient Inversionen_US
dc.subjectPrivacy Leakageen_US
dc.titleGradFilt : class-wise targeted data reconstruction from gradients in federated learningen_US
dc.typeConference Paperen_US
dc.identifier.spage698en_US
dc.identifier.epage701en_US
dc.identifier.doi10.1145/3589335.3651514en_US
dcterms.abstractGradient Inversion Attacks (GIAs) have shown that private training data can be recovered from gradient updates in Federated Learning (FL). However, these GIAs can only recover the entire batch of data with limited performance or stochastically restore some random instances. In this paper, we propose a class-wise targeted attack, named GradFilt, which can reconstruct the training data of some specified class(es) from the batch-averaged gradients. By modifying the parameters of the classification layer, we create a filter within the FL model that eliminates the gradients of non-target data while preserving the gradients of target data. We evaluate GradFilt with image datasets on popular FL model architectures. The results show that GradFilt can effectively reconstruct the desired samples with higher accuracies than the existing GIAs. Moreover, we can also achieve 100% success rate in restoring the batch labels. We hope this work can raise awareness of the privacy risks in FL and inspire effective defense mechanisms.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationIn WWW '24 Companion: Companion Proceedings of the ACM Web Conference 2024, p. 698-701. New York, NY: The Association for Computing Machinery, 2024en_US
dcterms.issued2024-
dc.identifier.scopus2-s2.0-85194493773-
dc.relation.ispartofbookWWW '24 Companion: Companion Proceedings of the ACM Web Conference 2024en_US
dc.relation.conferenceInternational World Wide Web Conference [WWW]en_US
dc.description.validate202409 bcchen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_TA-
dc.description.fundingSourceSelf-fundeden_US
dc.description.pubStatusPublisheden_US
dc.description.TAACM (2024)en_US
dc.description.oaCategoryTAen_US
Appears in Collections:Conference Paper
Files in This Item:
File Description SizeFormat 
3589335.3651514.pdf5.61 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

79
Citations as of Apr 14, 2025

Downloads

30
Citations as of Apr 14, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.