Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/109201
DC FieldValueLanguage
dc.contributorResearch Centre for Electric Vehiclesen_US
dc.contributorDepartment of Electrical and Electronic Engineeringen_US
dc.creatorJia, Cen_US
dc.creatorLiu, Wen_US
dc.creatorHe, Hen_US
dc.creatorChau, KTen_US
dc.date.accessioned2024-09-24T02:07:07Z-
dc.date.available2024-09-24T02:07:07Z-
dc.identifier.issn0196-8904en_US
dc.identifier.urihttp://hdl.handle.net/10397/109201-
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.subjectCabin comfort controlen_US
dc.subjectDeep reinforcement learningen_US
dc.subjectEnergy management strategyen_US
dc.subjectFuel cell busen_US
dc.subjectMulti-source information fusionen_US
dc.titleDeep reinforcement learning-based energy management strategy for fuel cell buses integrating future road information and cabin comfort controlen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume321en_US
dc.identifier.doi10.1016/j.enconman.2024.119032en_US
dcterms.abstractConventional energy management strategy (EMS) for fuel cell vehicles (FCVs) aims to optimize powertrain energy consumption while ignoring the air conditioning regulation, whereby the overall energy efficiency cannot be optimal. To enhance the cabin-powertrain holistic energy utilization without compromising energy storage system degradation and passenger temperature comfort, this paper proposes a novel energy management paradigm. The comprehensive control of cabin comfort and fuel cell/battery durability is achieved by comprehensively utilizing onboard sensors and vehicle-cloud infrastructure. Specifically, the vehicle energy- and thermal-coupled control problem is formulated by considering energy consumption, component ageing, and cabin’s dynamic thermal model. In addition to regular state space in energy management problems, future road information and environmental temperature are innovatively integrated into the energy management framework. A twin delayed deep deterministic policy gradient algorithm is used to solve the problem to enhance the overall energy efficiency. Simulation results indicate that, compared with rule-based EMSs, the proposed strategy achieves cabin comfort while extending the battery life by at least 3.79 % and reducing the overall vehicle operating cost by at least 2.71 %.en_US
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationEnergy conversion and management, 1 Dec. 2024, v. 321, 119032en_US
dcterms.isPartOfEnergy conversion and managementen_US
dcterms.issued2024-12-01-
dc.identifier.eissn1879-2227en_US
dc.identifier.artn119032en_US
dc.description.validate202409 bcchen_US
dc.description.oaNot applicableen_US
dc.identifier.FolderNumbera3211-
dc.identifier.SubFormID49790-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2026-12-01en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2026-12-01
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

24
Citations as of Nov 24, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.