Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/109027
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Electrical and Electronic Engineeringen_US
dc.creatorZhao, Pen_US
dc.creatorKrishnaiah, KVen_US
dc.creatorGuo, Len_US
dc.creatorLi, Ten_US
dc.creatorHo, HLen_US
dc.creatorZhang, APen_US
dc.creatorJin, Wen_US
dc.date.accessioned2024-09-13T07:19:56Z-
dc.date.available2024-09-13T07:19:56Z-
dc.identifier.issn1863-8880en_US
dc.identifier.urihttp://hdl.handle.net/10397/109027-
dc.language.isoenen_US
dc.publisherWiley-VCH Verlag GmbH & Co. KGaAen_US
dc.rights© 2024 The Authors. Laser & Photonics Reviews published by Wiley-VCH GmbH. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.en_US
dc.rightsThe following publication P. Zhao, K. V. Krishnaiah, L. Guo, T. Li, H. L. Ho, A. P. Zhang, W. Jin, Ultraminiature Optical Fiber-Tip 3D-Microprinted Photothermal Interferometric Gas Sensors. Laser Photonics Rev 2024, 18, 2301285 is available at https://doi.org/10.1002/lpor.202301285.en_US
dc.subject3D microprintingen_US
dc.subjectFabry-Pérot cavityen_US
dc.subjectFiber-opticsen_US
dc.subjectGas sensorsen_US
dc.subjectLaser spectroscopyen_US
dc.titleUltraminiature optical fiber-tip 3D-microprinted photothermal interferometric gas sensorsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume18en_US
dc.identifier.issue9en_US
dc.identifier.doi10.1002/lpor.202301285en_US
dcterms.abstractOptical fiber sensor emerges as a highly promising technology for trace gas detection due to their high sensitivity, remote capability, and immunity to electromagnetic interference. However, the state-or-the-art fiber-optic gas sensors typically use lengthy optical fibers as gas absorption cells or coatings with functional materials to achieve more sensitive gas detection, which poses challenges such as slow response and/or poor selectivity, as well as limitations on their use in confined spaces. Here, an ultraminiature optical fiber-tip photothermal gas sensor via direct 3D micro-printing of a Fabry-Pérot cavity on the end face of a standard single-mode optical fiber is reported. It enables not only direct interaction between light and gas molecules at the fiber output but also remote interrogation through an interferometric read-out scheme. With a low-finesse microcavity of 66 µm in length, a noise equivalent concentration of 160 parts-per-billion acetylene gas is demonstrated with an ultra-fast response time of 0.5 s. Such a small high-performance photothermal gas sensor offers an approach to remotely detecting trace gases for a myriad of applications ranging from in-reactor monitoring to medical diagnosis.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationLaser & photonics reviews, Sept 2024, v. 18, no. 9, 2301285en_US
dcterms.isPartOfLaser & photonics reviewsen_US
dcterms.issued2024-09-
dc.identifier.scopus2-s2.0-85191163790-
dc.identifier.eissn1863-8899en_US
dc.identifier.artn2301285en_US
dc.description.validate202409 bcchen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_TA-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextHong Kong SAR Government GRF Grants; Local Innovative and Research Teams Project of Guangdong Pearl River Talents Programen_US
dc.description.pubStatusPublisheden_US
dc.description.TAWiley (2024)en_US
dc.description.oaCategoryTAen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Zhao_Ultraminiature_Optical_Fiber‐Tip.pdf2.08 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

76
Citations as of Nov 10, 2025

Downloads

65
Citations as of Nov 10, 2025

SCOPUSTM   
Citations

16
Citations as of Dec 19, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.