Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/109023
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorPhotonics Research Instituteen_US
dc.contributorDepartment of Electrical and Electronic Engineeringen_US
dc.creatorZhou, Yen_US
dc.creatorZhou, Gen_US
dc.creatorQin, Yen_US
dc.creatorFu, Sen_US
dc.creatorLau, APTen_US
dc.creatorWong, KKYen_US
dc.date.accessioned2024-09-13T07:19:53Z-
dc.date.available2024-09-13T07:19:53Z-
dc.identifier.issn1863-8880en_US
dc.identifier.urihttp://hdl.handle.net/10397/109023-
dc.language.isoenen_US
dc.publisherWiley-VCH Verlag GmbH & Co. KGaAen_US
dc.rights© 2023 The Authors. Laser & Photonics Reviews published byWiley-VCH GmbH. This is an open access article under the terms of theCreative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permitsuse, distribution and reproduction in any medium, provided the originalwork is properly cited and is not used for commercial purposes.en_US
dc.rightsThe following publication Y. Zhou, G. Zhou, Y. Qin, S. Fu, A. P. T. Lau, K. K. Y. Wong, Unveiling Laser Radiation of Multiple Optical Solitons by Nonlinear Fourier Transform. Laser Photonics Rev 2023, 17, 2200731 is available at https://doi.org/10.1002/lpor.202200731.en_US
dc.titleUnveiling laser radiation of multiple optical solitons by nonlinear fourier transformen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume17en_US
dc.identifier.issue7en_US
dc.identifier.doi10.1002/lpor.202200731en_US
dcterms.abstractMode-locked fiber lasers are applied in versatile scientific fields and exhibit a rich diversity of nonlinear dynamics. However, the nontrivial coexistence of solitons and embedded dispersive wave radiation prevents unveiling the real nonlinear dynamics in mode-locked fiber lasers, such as multiple solitons interaction. Here, nonlinear Fourier transform (NFT) is applied as a signal processing tool to reveal nonequilibrium multiple soliton dynamics. It is feasible to isolate solitons from the continuous wave background in a fiber laser. The real-time coherent homodyne detection methodology is used to measure the full-field dynamic evolution of multiple solitons, including multiple solitons buildup and sequentially nonequilibrium evolution with complex splitting, drifting, and collision processes. With the approach of inverse NFT, the corresponding various pure solitons buildup and collision are reconstructed. The eigenvalue probability distributions are used to classify different lasing regimes. Moreover, the controllable multiple solitons drifting is achieved and characterized by using all-optical methods. Experimental results suggest that NFT can be used to identify localized soliton nonequilibrium evolution excluding dispersive wave radiation influence, which provides a new window into the physics of the underlying laser dynamics and uncovers real soliton interaction in dissipative nonlinear systems.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationLaser & photonics reviews, July 2023, v. 17, no. 7, 2200731en_US
dcterms.isPartOfLaser & photonics reviewsen_US
dcterms.issued2023-07-
dc.identifier.scopus2-s2.0-85159053602-
dc.identifier.eissn1863-8899en_US
dc.identifier.artn2200731en_US
dc.description.validate202409 bcchen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberCDCF_2023-2024-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Key R&D Program of China; Health@InnoHK program of the Innovation and Technology Commission of the Hong Kong SAR Governmenten_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryCCen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Zhou_Unveiling_Laser_Radiation.pdf4.55 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

83
Citations as of Nov 10, 2025

Downloads

38
Citations as of Nov 10, 2025

SCOPUSTM   
Citations

9
Citations as of Dec 19, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.