Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/108824
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Industrial and Systems Engineering-
dc.creatorShang, S-
dc.creatorWang, C-
dc.creatorLiang, X-
dc.creatorCheung, CF-
dc.creatorZheng, P-
dc.date.accessioned2024-08-27T04:40:51Z-
dc.date.available2024-08-27T04:40:51Z-
dc.identifier.urihttp://hdl.handle.net/10397/108824-
dc.language.isoenen_US
dc.publisherMDPI AGen_US
dc.rights© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).en_US
dc.rightsThe following publication Shang S, Wang C, Liang X, Cheung CF, Zheng P. Surface Roughness Prediction in Ultra-Precision Milling: An Extreme Learning Machine Method with Data Fusion. Micromachines. 2023; 14(11):2016 is available at https://doi.org/10.3390/mi14112016.en_US
dc.subjectExtreme learning machineen_US
dc.subjectFeature-level data fusionen_US
dc.subjectMillingen_US
dc.subjectSurface roughness predictionen_US
dc.subjectUltra-precision machiningen_US
dc.titleSurface roughness prediction in ultra-precision milling : an extreme learning machine method with data fusionen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume14-
dc.identifier.issue11-
dc.identifier.doi10.3390/mi14112016-
dcterms.abstractThis paper pioneers the use of the extreme learning machine (ELM) approach for surface roughness prediction in ultra-precision milling, leveraging the excellent fitting ability with small datasets and the fast learning speed of the extreme learning machine method. By providing abundant machining information, the machining parameters and force signal data are fused on the feature level to further improve ELM prediction accuracy. An ultra-precision milling experiment was designed and conducted to verify our proposed data-fusion-based ELM method. The results show that the ELM with data fusion outperforms other state-of-art methods in surface roughness prediction. It achieves an impressively low mean absolute percentage error of 1.6% while requiring a mere 18 s for model training.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationMicromachines, Nov. 2023, v. 14, no. 11, 2016-
dcterms.isPartOfMicromachines-
dcterms.issued2023-11-
dc.identifier.scopus2-s2.0-85178112419-
dc.identifier.eissn2072-666X-
dc.identifier.artn2016-
dc.description.validate202408 bcch-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_Scopus/WOSen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextInnovation and Technology Commission (ITC) of the Government of the Hong Kong Special Administrative Region (HKSAR); Research Committee of the Hong Kong Polytechnic Universityen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryCCen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
micromachines-14-02016-v2.pdf3.85 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

103
Citations as of Nov 10, 2025

Downloads

30
Citations as of Nov 10, 2025

SCOPUSTM   
Citations

7
Citations as of Dec 19, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.