Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/108812
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Mechanical Engineering-
dc.creatorTian, Y-
dc.creatorWang, L-
dc.date.accessioned2024-08-27T04:40:44Z-
dc.date.available2024-08-27T04:40:44Z-
dc.identifier.urihttp://hdl.handle.net/10397/108812-
dc.language.isoenen_US
dc.publisherMDPI AGen_US
dc.rights© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).en_US
dc.rightsThe following publication Tian Y, Wang L. Microfiber-Patterned Versatile Perfusable Vascular Networks. Micromachines. 2023; 14(12):2201 is available at https://doi.org/10.3390/mi14122201.en_US
dc.subjectBlood vesselen_US
dc.subjectMicrofiberen_US
dc.subjectMicrofiber-patterneden_US
dc.subjectVascular networksen_US
dc.titleMicrofiber-patterned versatile perfusable vascular networksen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume14-
dc.identifier.issue12-
dc.identifier.doi10.3390/mi14122201-
dcterms.abstractRapid construction of versatile perfusable vascular networks in vitro with cylindrical channels still remains challenging. Here, a microfiber-patterned method is developed to precisely fabricate versatile well-controlled perfusable vascular networks with cylindrical channels. This method uses tensile microfibers as an easy-removable template to rapidly generate cylindrical-channel chips with one-dimensional, two-dimensional, three-dimensional and multilayered structures, enabling the independent and precise control over the vascular geometry. These perfusable and cytocompatible chips have great potential to mimic vascular networks. The inner surfaces of a three-dimensional vascular network are lined with the human umbilical vein endothelial cells (HUVECs) to imitate the endothelialization of a human blood vessel. The results show that HUVECs attach well on the inner surface of channels and form endothelial tubular lumens with great cell viability. The simple, rapid and low-cost technique for versatile perfusable vascular networks offers plenty of promising opportunities for microfluidics, tissue engineering, clinical medicine and drug development.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationMicromachines, Dec. 2023, v. 14, no. 12, 2201-
dcterms.isPartOfMicromachines-
dcterms.issued2023-12-
dc.identifier.scopus2-s2.0-85180265206-
dc.identifier.eissn2072-666X-
dc.identifier.artn2201-
dc.description.validate202408 bcch-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_Scopus/WOSen_US
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Natural Science Foundation of China; Guangdong Basic and Applied Basic Research Foundation; Fundamental Research Funds for the Central Universities; China Postdoctoral Science Foundationen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryCCen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
micromachines-14-02201-v2.pdf8.98 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

81
Citations as of Nov 10, 2025

Downloads

36
Citations as of Nov 10, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.