Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/108676
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Electrical and Electronic Engineering-
dc.creatorLi, T-
dc.creatorFung, CH-
dc.creatorWong, HT-
dc.creatorChan, TL-
dc.creatorHu, H-
dc.date.accessioned2024-08-27T04:39:57Z-
dc.date.available2024-08-27T04:39:57Z-
dc.identifier.urihttp://hdl.handle.net/10397/108676-
dc.language.isoenen_US
dc.publisherMDPI AGen_US
dc.rights© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).en_US
dc.rightsThe following publication Li T, Fung C-H, Wong H-T, Chan T-L, Hu H. Functional Subspace Variational Autoencoder for Domain-Adaptive Fault Diagnosis. Mathematics. 2023; 11(13):2910 is available at https://doi.org/10.3390/math11132910.en_US
dc.subjectDomain adaptationen_US
dc.subjectFunctional data analysisen_US
dc.subjectReliabilityen_US
dc.subjectVariational autoencoderen_US
dc.titleFunctional subspace variational autoencoder for domain-adaptive fault diagnosisen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume11-
dc.identifier.issue13-
dc.identifier.doi10.3390/math11132910-
dcterms.abstractThis paper presents the functional subspace variational autoencoder, a technique addressing challenges in sensor data analysis in transportation systems, notably the misalignment of time series data and a lack of labeled data. Our technique converts vectorial data into functional data, which captures continuous temporal dynamics instead of discrete data that consist of separate observations. This conversion reduces data dimensions for machine learning tasks in fault diagnosis and facilitates the efficient removal of misalignment. The variational autoencoder identifies trends and anomalies in the data and employs a domain adaptation method to associate learned representations between labeled and unlabeled datasets. We validate the technique’s effectiveness using synthetic and real-world transportation data, providing valuable insights for transportation infrastructure reliability monitoring.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationMathematics, July 2023, v. 11, no. 13, 2910-
dcterms.isPartOfMathematics-
dcterms.issued2023-07-
dc.identifier.scopus2-s2.0-85164678169-
dc.identifier.eissn2227-7390-
dc.identifier.artn2910-
dc.description.validate202408 bcch-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_Scopus/WOSen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextInnovation and Technology Commission (ITC) of Hong Kong, via AIR@InnoHK clusteren_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryCCen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
mathematics-11-02910-v2.pdf1.11 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

76
Citations as of Nov 10, 2025

Downloads

34
Citations as of Nov 10, 2025

SCOPUSTM   
Citations

1
Citations as of Dec 19, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.