Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/108627
DC FieldValueLanguage
dc.contributorPhotonics Research Instituteen_US
dc.contributorDepartment of Applied Physicsen_US
dc.creatorDu, Yen_US
dc.creatorPang, Zen_US
dc.creatorZou, Yen_US
dc.creatorZhu, Ben_US
dc.creatorLiu, Len_US
dc.creatorZhang, Xen_US
dc.creatorWang, Cen_US
dc.date.accessioned2024-08-22T02:14:30Z-
dc.date.available2024-08-22T02:14:30Z-
dc.identifier.issn1385-8947en_US
dc.identifier.urihttp://hdl.handle.net/10397/108627-
dc.language.isoenen_US
dc.publisherElsevier BVen_US
dc.subjectLithium niobateen_US
dc.subjectMicrofluidicsen_US
dc.subjectProton exchangeen_US
dc.subjectSurface acoustic waveen_US
dc.subjectWafer bondingen_US
dc.titleProton exchange-enhanced surface activated bonding for facile fabrication of monolithic lithium niobate microfluidic chipsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume496en_US
dc.identifier.doi10.1016/j.cej.2024.154046en_US
dcterms.abstractIn the quest to enhance the functionality and efficiency of lab-on-a-chip systems, integrating diverse physical phenomena such as acoustics, optics, and electronics into a single platform has emerged as a pivotal strategy. Lithium niobate (LiNbO3, or LN) stands out for its exceptional piezoelectric and electro-optic properties, making it an ideal candidate for such integrated systems. However, the full exploitation of LN in microfluidic applications has been hindered by the complex challenges associated with its fabrication. Addressing this gap, our research introduces a facile fabrication method for creating monolithic LN microfluidic chips. By employing a proton exchange-assisted surface-activated bonding technique, we achieve high-strength, flawless bonding at lower temperatures, overcoming the traditional barriers of LN machining. This method eliminates the chemical stability of LN by removing lithium ions and significantly enriches the surface with functional groups, leading to a bonding strength exceeding 10 MPa after annealing at 150 °C. Additionally, we have optimized an argon plasma etching process to ensure the creation of smooth LN channels at room temperature. The development of a fully integrated LN chip through this approach demonstrates superior performance, especially in surface acoustic wave (SAW) applications, compared to conventional PDMS/LN hybrids. This breakthrough not only realizes the fabrication process of LN microfluidic devices but also opens new avenues for the advancement of integrated microsystems across various scientific and technological domains.en_US
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationChemical engineering journal, 15 Sept 2024, v. 496, 154046en_US
dcterms.isPartOfChemical engineering journalen_US
dcterms.issued2024-09-15-
dc.identifier.eissn1873-3212en_US
dc.identifier.artn154046en_US
dc.description.validate202408 bcchen_US
dc.description.oaNot applicableen_US
dc.identifier.FolderNumbera3145-
dc.identifier.SubFormID49689-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextHong Kong Polytechnic Universityen_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2026-09-15en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2026-09-15
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

31
Citations as of Apr 14, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.