Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/108599
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Biology and Chemical Technologyen_US
dc.contributorResearch Institute for Smart Energyen_US
dc.creatorLi, Yen_US
dc.creatorXin, Ten_US
dc.creatorCao, Zen_US
dc.creatorZheng, Wen_US
dc.creatorHe, Pen_US
dc.creatorLee, LYSen_US
dc.date.accessioned2024-08-20T01:52:33Z-
dc.date.available2024-08-20T01:52:33Z-
dc.identifier.issn1864-5631en_US
dc.identifier.urihttp://hdl.handle.net/10397/108599-
dc.language.isoenen_US
dc.publisherWiley-VCH Verlag GmbH & Co. KGaAen_US
dc.rights© 2024 The Authors. ChemSusChem published by Wiley-VCH GmbH. This is an open access article under the terms of the Creative Commons Attribution Non-Commercial NoDerivs License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.en_US
dc.rightsThe following publication Y. Li, T. Xin, Z. Cao, W. Zheng, P. He, L. Yoon Suk Lee, Optimized Transition Metal Phosphides for Direct Seawater Electrolysis: Current Trends. ChemSusChem 2024, 17, e202301926. https://doi.org/10.1002/cssc.202301926.en_US
dc.subjectInterface engineeringen_US
dc.subjectSeawater splittingen_US
dc.subjectStructural modificationen_US
dc.subjectTransition metal phosphidesen_US
dc.titleOptimized transition metal phosphides for direct seawater electrolysis : current trendsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume17en_US
dc.identifier.issue15en_US
dc.identifier.doi10.1002/cssc.202301926en_US
dcterms.abstractSeawater electrolysis presents a viable route for sustainable large-scale hydrogen production, yet its practical application is hindered by several technical challenges. These include the sluggish kinetics of hydrogen evolution, poor stability, cation deposition at the cathode, electrode corrosion, and competing chloride oxidation at the anode. To overcome these obstacles, the development of innovative electrocatalysts is crucial. Transition metal phosphides (TMPs) have emerged as promising candidates owing to their superior catalytic performance and tunable structural properties. This review provides a comprehensive analysis of recent progress in the structural engineering of TMPs tailored for efficient seawater electrolysis. We delve into the catalytic mechanisms underpinning hydrogen and oxygen evolution reactions in different pH conditions, along with the detrimental side reactions that impede hydrogen production efficiency. Several methods to prepare TMPs are then introduced. Additionally, detailed discussions on structural modifications and interface engineering tactics are presented, showcasing strategies to enhance the activity and durability of TMP electrocatalysts. By analyzing current research findings, our review aims to inform ongoing research endeavors and foster advancements in seawater electrolysis for practical and ecologically sound hydrogen generation.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationChemSusChem, 12 Aug. 2024, v. 17, no. 15, e202301926en_US
dcterms.isPartOfChemSusChemen_US
dcterms.issued2024-08-12-
dc.identifier.scopus2-s2.0-85190818278-
dc.identifier.eissn1864-564xen_US
dc.identifier.artne202301926en_US
dc.description.validate202408 bcchen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_TA-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextAnhui Polytechnic University research start-up fund; Hong Kong Polytechnic Universityen_US
dc.description.pubStatusPublisheden_US
dc.description.TAWiley (2024)en_US
dc.description.oaCategoryTAen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Li_Optimized_Transition_Metal.pdf14.71 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

77
Citations as of Nov 10, 2025

Downloads

49
Citations as of Nov 10, 2025

SCOPUSTM   
Citations

26
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

15
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.