Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/108589
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Mechanical Engineeringen_US
dc.creatorZhang, Len_US
dc.creatorWang, Ten_US
dc.creatorChen, Jen_US
dc.creatorWu, Men_US
dc.creatorZhao, Ten_US
dc.date.accessioned2024-08-19T03:06:51Z-
dc.date.available2024-08-19T03:06:51Z-
dc.identifier.issn2050-7488en_US
dc.identifier.urihttp://hdl.handle.net/10397/108589-
dc.language.isoenen_US
dc.publisherRoyal Society of Chemistryen_US
dc.rightsThis journal is © The Royal Society of Chemistry 2024en_US
dc.rightsThis article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence (http://creativecommons.org/licenses/by-nc/3.0/).en_US
dc.rightsThe following publication Zhang, L., Wang, T., Chen, J., Wu, M., & Zhao, T. (2024). An artificial cathode-electrolyte interphase enabling one-step sulfur transition in polyethylene oxide-based solid-state lithium–sulfur batteries [10.1039/D4TA02413C]. Journal of Materials Chemistry A, 12(37), 25407-25415 is available at https://doi.org/10.1039/D4TA02413C.en_US
dc.subjectCathode-electrolyte interphaseen_US
dc.subjectLithium-sulfur batteryen_US
dc.subjectPolyethylene oxideen_US
dc.subjectTheoretical calculationen_US
dc.titleArtificial cathode-electrolyte interphase enabling one-step sulfur transition in polyethylene oxide-based solid-state lithium-sulfur batteriesen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage25407en_US
dc.identifier.epage25415en_US
dc.identifier.volume12en_US
dc.identifier.issue37en_US
dc.identifier.doi10.1039/D4TA02413Cen_US
dcterms.abstractAll-solid-state lithium–sulfur (Li–S) batteries using polyethylene oxide (PEO)-based electrolytes hold the advantages of high theoretical energy density, cost-effectiveness, and high safety. However, the drawback of polysulfide dissolution in PEO results in a short battery lifespan. Here, we propose to construct an artificial cathode-electrolyte interphase (CEI) on the S cathode, which converts the S speciation pathway to a one-step solid transition, significantly mitigating the polysulfide migration in PEO. Surface analyses and theoretical calculations reveal the composition of the CEI and its effect on the reaction mechanism. As a result, the all-solid-state Li–S cell with the artificial CEI is able to deliver 873 mA h g−1 at 100 mA g−1 and maintain 739 mA h g−1 after 50 cycles, whereas the cell using the pristine S cathode retains only 364 mA h g−1. More remarkably, the artificial CEI enables the cell to achieve a high capacity retention rate of 83.1% at 300 mA g−1 over 200 cycles, demonstrating that our strategy of CEI manipulation effectively enhances the cycling reversibility of PEO-based solid-state Li–S batteries.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationJournal of materials chemistry A, 7 Oct. 2024, v. 12, no. 37, p. 25407-25415en_US
dcterms.isPartOfJournal of materials chemistry Aen_US
dcterms.issued2024-10-07-
dc.identifier.eissn2050-7496en_US
dc.description.validate202408 bcchen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumbera3136-
dc.identifier.SubFormID49678-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryCCen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
d4ta02413c.pdf1.18 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

102
Citations as of Sep 22, 2025

Downloads

23
Citations as of Sep 22, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.