Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/108356
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorSchool of Fashion and Textilesen_US
dc.contributorMainland Development Officeen_US
dc.creatorZhao, Yen_US
dc.creatorHubao, Aen_US
dc.creatorCheung, YHen_US
dc.creatorLam, Yen_US
dc.creatorTang, Jen_US
dc.creatorLi, Hen_US
dc.creatorYang, Zen_US
dc.creatorXin, JHen_US
dc.date.accessioned2024-08-14T06:32:21Z-
dc.date.available2024-08-14T06:32:21Z-
dc.identifier.issn1616-301Xen_US
dc.identifier.urihttp://hdl.handle.net/10397/108356-
dc.language.isoenen_US
dc.publisherWiley-VCH Verlag GmbH & Co. KGaAen_US
dc.rights© 2024 The Authors. Advanced Functional Materials published by Wiley-VCH GmbHen_US
dc.rightsThis is an open access article under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.en_US
dc.rightsThe following publication Y. Zhao, H. A, Y. H. Cheung, Y. Lam, J. Tang, H. Li, Z. Yang, J. H. Xin, Capillary Condensation Mediated Fluidic Straining for Enhanced Bacterial Inactivation. Adv. Funct. Mater. 2024, 34(32), 2314581 is available at https://doi.org/10.1002/adfm.202314581.en_US
dc.subjectAntibacterial materialsen_US
dc.subjectCapillary condensationen_US
dc.subjectLiquid bridgeen_US
dc.subjectSuperhydrophilicityen_US
dc.subjectWettabilityen_US
dc.titleCapillary condensation mediated fluidic straining for enhanced bacterial inactivationen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume34en_US
dc.identifier.issue32en_US
dc.identifier.doi10.1002/adfm.202314581en_US
dcterms.abstractBiomaterials capable of continuously inactivating pathogens are essential for suppressing transmission of infectious diseases, such as epidemic cerebrospinal meningitis and pulmonary tuberculosis. Here, capillary condensation of air moisture within nano-confined spaces between superhydrophilic rigid nanorods is shown and target microbiology spontaneously stretch and inactivate aerosolized microorganisms. Specifically, the negative Gaussian curvature-shaped water condensate causes fluidic straining, comprising surface tension and Laplace pressure, strong enough to deform and eliminate the selected bacteria. Plate counting quantifies the sharply reduced contact-killing period for superhydrophilic and bare nanorods (6 vs 100 min for E. coli, 20 vs 120 min for S. aureus) under relative humidity of 70%. Theoretical calculations and experimental studies indicate increased mechanical straining and mechano-bactericidal by improving air moisture content. To further illustrate utility, long-term antibacterial medical masks are fabricated by integrating such nanorods onto commercial fabrics. Collectively, these findings highlight the immense potential of capillary condensation-induced fluidic straining as an eco-friendly, broad-spectrum, and highly efficient antibacterial strategy.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationAdvanced functional materials, 8 Aug. 2024, v. 34, no. 32, 2314581en_US
dcterms.isPartOfAdvanced functional materialsen_US
dcterms.issued2024-08-08-
dc.identifier.scopus2-s2.0-85192882629-
dc.identifier.eissn1616-3028en_US
dc.identifier.artn2314581en_US
dc.description.validate202408 bcchen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_TA-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextHong Kong Polytechnic University, PolyU; National Natural Science Foundation of China, NSFCen_US
dc.description.pubStatusPublisheden_US
dc.description.TAWiley (2024)en_US
dc.description.oaCategoryTAen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Zhao_Capillary_Condensation_Mediated.pdf5.58 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

78
Citations as of Nov 10, 2025

Downloads

37
Citations as of Nov 10, 2025

SCOPUSTM   
Citations

6
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

1
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.