Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/108354
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Building and Real Estateen_US
dc.contributorResearch Institute for Sustainable Urban Developmenten_US
dc.contributorResearch Institute for Smart Energyen_US
dc.creatorChen, Xen_US
dc.creatorYu, Nen_US
dc.creatorSong, Yen_US
dc.creatorLiu, Ten_US
dc.creatorXu, Hen_US
dc.creatorGuan, Den_US
dc.creatorLi, Zen_US
dc.creatorHuang, WHen_US
dc.creatorShao, Zen_US
dc.creatorCiucci, Fen_US
dc.creatorNi, Men_US
dc.date.accessioned2024-08-14T06:32:18Z-
dc.date.available2024-08-14T06:32:18Z-
dc.identifier.issn0935-9648en_US
dc.identifier.urihttp://hdl.handle.net/10397/108354-
dc.language.isoenen_US
dc.publisherWiley-VCH Verlag GmbH & Co. KGaAen_US
dc.rights© 2024 The Author(s). Advanced Materials published by Wiley-VCH GmbHen_US
dc.rightsThis is an open access article under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.en_US
dc.rightsThe following publication X. Chen, N. Yu, Y. Song, T. Liu, H. Xu, D. Guan, Z. Li, W.-H. Huang, Z. Shao, F. Ciucci, M. Ni, Synergistic Bulk and Surface Engineering for Expeditious and Durable Reversible Protonic Ceramic Electrochemical Cells Air Electrode. Adv. Mater. 2024, 36(32), 2403998 is available at https://doi.org/10.1002/adma.202403998.en_US
dc.subjectAir electrodeen_US
dc.subjectMetal oxide nano-catalysten_US
dc.subjectMetal-oxygen bondsen_US
dc.subjectOxygen reduction/evolution reactionsen_US
dc.subjectReversible protonic ceramic electrochemical cellsen_US
dc.titleSynergistic bulk and surface engineering for expeditious and durable reversible protonic ceramic electrochemical cells air electrodeen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume36en_US
dc.identifier.issue32en_US
dc.identifier.doi10.1002/adma.202403998en_US
dcterms.abstractReversible protonic ceramic electrochemical cells (R-PCECs) offer the potential for high-efficiency power generation and green hydrogen production at intermediate temperatures. However, the commercial viability of R-PCECs is hampered by the sluggish kinetics of the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) within conventional air electrodes operating at reduced temperatures. To address this challenge, this work introduces a novel approach based on the simultaneous optimization of bulk-phase metal-oxygen bonds and in-situ formation of a metal oxide nano-catalyst surface modification. This strategy is designed to expedite the ORR/OER electrocatalytic activity of air electrodes exhibiting triple (O2−, H+, e−) conductivity. Specifically, this engineered air electrode nanocomposite-Ba(Co0.4Fe0.4Zr0.1Y0.1)0.95Ni0.05F0.1O2.9-δ demonstrates remarkable ORR/OER catalytic activity and exceptional durability in R-PCECs. This is evidenced by significantly improved peak power density from 626 to 996 mW cm−2 and highly stable reversibility over a 100-h cycling period. This research offers a rational design strategy to achieve high-performance R-PCEC air electrodes with superior operational activity and stability for efficient and sustainable energy conversion and storage.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationAdvanced materials, 8 Aug. 2024, v. 36, no. 32, 2403998en_US
dcterms.isPartOfAdvanced materialsen_US
dcterms.issued2024-08-08-
dc.identifier.scopus2-s2.0-85195134036-
dc.identifier.eissn1521-4095en_US
dc.identifier.artn2403998en_US
dc.description.validate202408 bcchen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_TA-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextBasic and Applied Basic Research Foundation of Guangdong Province; National Natural Science Foundation of China, NSFCen_US
dc.description.pubStatusPublisheden_US
dc.description.TAWiley (2024)en_US
dc.description.oaCategoryTAen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Chen_Synergistic_Bulk_Surface.pdf4.73 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

72
Citations as of Nov 10, 2025

Downloads

452
Citations as of Nov 10, 2025

SCOPUSTM   
Citations

51
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

50
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.