Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/108349
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of English and Communicationen_US
dc.creatorChan, RKWen_US
dc.creatorWang, BXen_US
dc.date.accessioned2024-08-13T06:26:14Z-
dc.date.available2024-08-13T06:26:14Z-
dc.identifier.issn0023-8309en_US
dc.identifier.urihttp://hdl.handle.net/10397/108349-
dc.language.isoenen_US
dc.publisherSage Publications Ltd.en_US
dc.rightsThis is the accepted version of the publication Chan, R. K. W., & Wang, B. X. (2024). Modeling Lexical Tones for Speaker Discrimination. Language and Speech, 68(1), 229-243. Copyright © 2024 The Author(s). DOI: 10.1177/00238309241261702.en_US
dc.subjectCantoneseen_US
dc.subjectFundamental frequencyen_US
dc.subjectLexical toneen_US
dc.subjectMandarinen_US
dc.subjectSpeaker discriminationen_US
dc.titleModeling lexical tones for speaker discriminationen_US
dc.typeJournal/Magazine Articleen_US
dc.description.otherinformationTitle on author's file: Modelling lexical tones for speaker discriminationen_US
dc.identifier.spage229en_US
dc.identifier.epage243en_US
dc.identifier.volume68en_US
dc.identifier.issue1en_US
dc.identifier.doi10.1177/00238309241261702en_US
dcterms.abstractFundamental frequency (F0) has been widely studied and used in the context of speaker discrimination and forensic voice comparison casework, but most previous studies focused on long-term F0 statistics. Lexical tone, the linguistically structured and dynamic aspects of F0, has received much less research attention. A main methodological issue lies on how tonal F0 should be parameterized for the best speaker discrimination performance. This paper compares the speaker discriminatory performance of three approaches with lexical tone modeling: discrete cosine transform (DCT), polynomial curve fitting, and quantitative target approximation (qTA). Results show that using parameters based on DCT and polynomials led to similarly promising performance, whereas those based on qTA generally yielded relatively poor performance. Implications modeling surface tonal F0 and the underlying articulatory processes for speaker discrimination are discussed.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationLanguage and speech, Mar. 2025, v. 68, no. 1, p. 229-243en_US
dcterms.isPartOfLanguage and speechen_US
dcterms.issued2025-03-
dc.identifier.eissn1756-6053en_US
dc.description.validate202408 bcchen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumbera3130-
dc.identifier.SubFormID49670-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThe International Association for Forensic Phonetics and Acoustics (IAFPA) research grantsen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Chan_Modeling_Lexical_Tones.pdfPre-Published version2.11 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

48
Citations as of Apr 13, 2025

Downloads

46
Citations as of Apr 13, 2025

WEB OF SCIENCETM
Citations

1
Citations as of Apr 24, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.