Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/108272
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Building Environment and Energy Engineering-
dc.creatorSatheesan, MK-
dc.creatorTsang, TW-
dc.creatorMui, KW-
dc.creatorWong, LT-
dc.date.accessioned2024-07-30T07:37:46Z-
dc.date.available2024-07-30T07:37:46Z-
dc.identifier.issn1420-326X-
dc.identifier.urihttp://hdl.handle.net/10397/108272-
dc.language.isoenen_US
dc.publisherSage Publications Ltd.en_US
dc.rightsThis is the accepted version of the publication Satheesan MK, Tsang T-W, Mui K-W, Wong L-T. Optimal ventilation strategy for multi-bed hospital inpatient wards: CFD simulations using a genetic algorithm. Indoor and Built Environment. 2024;33(4):658-674. Copyright © 2023 The Author(s). DOI: 10.1177/1420326X231205139.en_US
dc.subjectBioaerosolen_US
dc.subjectCoupled simulationen_US
dc.subjectGenetic algorithm–computational fluid dynamicsen_US
dc.subjectHealthcare facilityen_US
dc.subjectInfection controlen_US
dc.subjectOptimisationen_US
dc.subjectventilationen_US
dc.titleOptimal ventilation strategy for multi-bed hospital inpatient wards : CFD simulations using a genetic algorithmen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage658-
dc.identifier.epage674-
dc.identifier.volume33-
dc.identifier.issue4-
dc.identifier.doi10.1177/1420326X231205139-
dcterms.abstractOptimising ventilation strategy for an indoor environment necessitates systematically evaluating the influence of a diverse combination of physical and operational parameters in the design space. This study proposes a methodology that couples an evolutionary algorithm (genetic algorithm) with an evaluation mechanism (computational fluid dynamics) to determine the optimal ventilation strategy for an inpatient ward. The traditional approach would exhaustively simulate numerous scenarios to identify the optimal combination of parameters meeting the design objective. The proposed methodology would iteratively evaluate diverse design solutions with fewer CFD simulations than the traditional approach. The results of design space exploration suggest that design parameters, namely, location of the infected patient; air change rate; flow rate through local exhaust grille; and number, location and size of supply air diffuser and local air exhaust grille, are critical in minimising the risk of cross-infection caused through contact transmission in a ward.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationIndoor and built environment, Apr. 2024, v. 33, no. 4, p. 658-674-
dcterms.isPartOfIndoor and built environment-
dcterms.issued2024-04-
dc.identifier.scopus2-s2.0-85175026158-
dc.identifier.eissn1423-0070-
dc.description.validate202407 bcch-
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumbera3105-n02en_US
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextCollaborative Research Fund (CRF) COVID-19 and Novel Infectious Disease (NID) Research Exerciseen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Satheesan_Optimal_Ventilation_Strategy.pdfPre-Published version2.72 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

44
Citations as of Apr 14, 2025

Downloads

50
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

5
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

1
Citations as of Apr 3, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.