Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/108263
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Physicsen_US
dc.contributorMainland Development Officeen_US
dc.contributorResearch Centre for Nanoscience and Nanotechnologyen_US
dc.creatorDang, Zen_US
dc.creatorGuo, Fen_US
dc.creatorZhao, Yen_US
dc.creatorJin, Ken_US
dc.creatorJie, Wen_US
dc.creatorHao, Jen_US
dc.date.accessioned2024-07-30T03:13:18Z-
dc.date.available2024-07-30T03:13:18Z-
dc.identifier.issn1616-301Xen_US
dc.identifier.urihttp://hdl.handle.net/10397/108263-
dc.language.isoenen_US
dc.publisherWiley-VCHen_US
dc.rights© 2024 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH. This is an open access article under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits use, distributionand reproduction in any medium, provided the original work is properly cited.en_US
dc.rightsThe following publication Z. Dang, F. Guo, Y. Zhao, K. Jin, W. Jie, J. Hao, Ferroelectric Modulation of ReS2-Based Multifunctional Optoelectronic Neuromorphic Devices for Wavelength-Selective Artificial Visual System. Adv. Funct. Mater. 2024, 34, 2400105 is available at https://doi.org/10.1002/adfm.202400105.en_US
dc.subject2D materialsen_US
dc.subjectImage pre-processingen_US
dc.subjectNeuromorphic visual platformen_US
dc.subjectOptoelectronic synapsesen_US
dc.subjectP(VDF-TrFE) ferroelectric transistorsen_US
dc.titleFerroelectric modulation of ReS₂-based multifunctional optoelectronic neuromorphic devices for wavelength-selective artificial visual systemen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume34en_US
dc.identifier.issue28en_US
dc.identifier.doi10.1002/adfm.202400105en_US
dcterms.abstractNeuromorphic optoelectronic vision system inspired by the biological platform displays potential for in-sensor computing. However, it is still challenge to process multiwavelength image in noisy environment with simple device configuration and light-tunable biological plasticity. Here, a prototype visual sensor is demonstrated based on ferroelectric copolymer poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) and 2D rhenium disulfide (ReS2) with integration of recognition, memorization, and pre-processing functions in the same device. Such synaptic devices achieve impressive electronic characteristics, including a current on/off ratio of 109 and mobility of 45 cm2V−1s−1. Various synaptic plasticity behaviors have been achieved owing to the switchable ferroelectricity, enabling them to establish an artificial neural network (ANN) with high digit recognition accuracy of 89%. Through constructing optoelectronic device array, object extraction is achieved with wavelength-selective capability in noisy environment, closely resembling human retina for color recognition. Above outcomes bring a notable improvement in the image recognition rate from 72% to 96%. Besides, low energy consumption comparable to single biological event can be realized. With these multifunctional features, this work inspires highly integrated neuromorphic systems and the development of wavelength-selective artificial visual platform.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationAdvanced functional materials, 10 July 2024, v. 34, no. 28, 2400105en_US
dcterms.isPartOfAdvanced functional materialsen_US
dcterms.issued2024-07-10-
dc.identifier.scopus2-s2.0-85187187859-
dc.identifier.eissn1616-3028en_US
dc.identifier.artn2400105en_US
dc.description.validate202407 bcwhen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_TA-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Natural Science Foundation of China; Hong Kong Polytechnic Universityen_US
dc.description.pubStatusPublisheden_US
dc.description.TAWiley (2024)en_US
dc.description.oaCategoryTAen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Dang_Ferroelectric_Modulation_ReS2‐Based.pdf2.7 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

102
Citations as of Nov 10, 2025

Downloads

69
Citations as of Nov 10, 2025

SCOPUSTM   
Citations

29
Citations as of Dec 19, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.