Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/108215
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Building Environment and Energy Engineeringen_US
dc.contributorResearch Institute for Smart Energyen_US
dc.creatorChen, Zen_US
dc.creatorGuo, Fen_US
dc.creatorXiao, Fen_US
dc.creatorJin, Xen_US
dc.creatorShi, Jen_US
dc.creatorHe, Wen_US
dc.date.accessioned2024-07-29T02:45:58Z-
dc.date.available2024-07-29T02:45:58Z-
dc.identifier.issn0140-7007en_US
dc.identifier.urihttp://hdl.handle.net/10397/108215-
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.rights© 2023 Elsevier Ltd and IIR. All rights reserved.en_US
dc.rights© 2023. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.rightsThe following publication Chen, Z., Guo, F., Xiao, F., Jin, X., Shi, J., & He, W. (2023). Development of data-driven performance benchmarking methodology for a large number of bus air conditioners. International Journal of Refrigeration, 149, 105-118 is available at https://doi.org/10.1016/j.ijrefrig.2022.12.027.en_US
dc.subjectBenchmarkingen_US
dc.subjectBus air conditioneren_US
dc.subjectDeep learningen_US
dc.subjectMultivariate time series analysisen_US
dc.titleDevelopment of data-driven performance benchmarking methodology for a large number of bus air conditionersen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage105en_US
dc.identifier.epage118en_US
dc.identifier.volume149en_US
dc.identifier.doi10.1016/j.ijrefrig.2022.12.027en_US
dcterms.abstractBus air conditioners (ACs) are responsible for providing a comfortable cabin environment for passengers. Identifying the bus ACs with degraded performance from a large number of city buses is a critical and challenging task in the development of smart cities. This study developed a data-driven benchmarking methodology to detect anomalous operations with degraded energy performance from a large number of bus ACs. For each target AC to be benchmarked, its similar operation data in other ACs, termed comparable peer samples, are first identified by a Long-Short-Term-Memory (LSTM) autoencoder-based similarity measurement method. The comparable peer samples are then used to develop a LSTM network-based reference model for predicting the power consumption of the target AC. A key energy performance indicator termed power consumption ratio (PCR) is defined for the target AC as the ratio of its measured power to the predicted power. Statistical analysis-based trend and change detection algorithms are designed to identify a trend or change of PCR over a few days for anomalous detection. To validate the benchmarking methodology, two fault experiments were conducted in field-operating bus ACs, and the results show encouraging potentials of the proposed methodology for health monitoring of a large number of ACs serving the city bus fleet.en_US
dcterms.accessRightsopen accessen_US
dcterms.alternativeDéveloppement d'une méthodologie d'analyse comparative de performances basée sur les données pour un grand nombre de conditionneurs d'air d'autobusen_US
dcterms.bibliographicCitationInternational journal of refrigeration, May 2023, v. 149, p. 105-118en_US
dcterms.isPartOfInternational journal of refrigerationen_US
dcterms.issued2023-05-
dc.identifier.scopus2-s2.0-85150273878-
dc.identifier.eissn1879-2081en_US
dc.description.validate202407 bcchen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumbera3093b, a3673a-
dc.identifier.SubFormID49584, 50656-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Chen_Development_Data-driven_Performance.pdfPre-Published version2.79 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

46
Citations as of Apr 13, 2025

SCOPUSTM   
Citations

3
Citations as of Jun 6, 2025

WEB OF SCIENCETM
Citations

3
Citations as of Jun 5, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.