Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/108203
DC FieldValueLanguage
dc.contributorDepartment of Building Environment and Energy Engineeringen_US
dc.contributorResearch Institute for Smart Energyen_US
dc.creatorXu, Ken_US
dc.creatorChen, Zen_US
dc.creatorXiao, Fen_US
dc.creatorZhang, Jen_US
dc.creatorZhang, Hen_US
dc.creatorMa, Ten_US
dc.date.accessioned2024-07-29T02:45:53Z-
dc.date.available2024-07-29T02:45:53Z-
dc.identifier.issn0926-5805en_US
dc.identifier.urihttp://hdl.handle.net/10397/108203-
dc.language.isoenen_US
dc.publisherElsevier BVen_US
dc.subjectBrick schemaen_US
dc.subjectData-driven applicationen_US
dc.subjectLarge-scale deploymenten_US
dc.subjectSemantic modelen_US
dc.subjectSmart building energy managementen_US
dc.titleSemantic model-based large-scale deployment of AI-driven building management applicationsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume165en_US
dc.identifier.doi10.1016/j.autcon.2024.105579en_US
dcterms.abstractDigitalization and Artificial Intelligent (AI) are revolutionizing building operation management. The abundance of data generated with the digitalization of buildings in the whole lifecycle can be harnessed to enhance building operational efficiency through data-driven control and optimization applications. However, the heterogeneity of data across building datasets hampers data interactivity and interoperability, presenting obstacles to the large-scale deployment of AI-enabled data-driven solutions. A semantic model-based framework is developed to integrate multi-sources data from buildings' air-conditioning system, supporting the large-scale deployment of AI-enabled data-driven building management applications. Both static and temporal data from multi sources are stored in the database guided by the semantic model. To demonstrate the framework's effectiveness, a building cooling load prediction application is implemented and evaluated across three typical buildings. The successful deployment of the proposed semantic model-based framework demonstrates its potential for facilitating large-scale deployment of AI-enabled data-driven applications in building sector.en_US
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationAutomation in construction, Sept 2024, v. 165, 105579en_US
dcterms.isPartOfAutomation in constructionen_US
dcterms.issued2024-09-
dc.identifier.scopus2-s2.0-85196378137-
dc.identifier.eissn1872-7891en_US
dc.identifier.artn105579en_US
dc.description.validate202407 bcchen_US
dc.description.oaNot applicableen_US
dc.identifier.FolderNumbera3093a, a3673b-
dc.identifier.SubFormID49564, 50670-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThe National Key R&D Program of China; Innovation and Technology Funden_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2026-09-30en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2026-09-30
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

48
Citations as of Apr 13, 2025

SCOPUSTM   
Citations

16
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

6
Citations as of Jun 5, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.