Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/108142
DC FieldValueLanguage
dc.contributorDepartment of Land Surveying and Geo-Informaticsen_US
dc.contributorResearch Centre for Artificial Intelligence in Geomaticsen_US
dc.contributorDepartment of Civil and Environmental Engineeringen_US
dc.contributorDepartment of Building Environment and Energy Engineeringen_US
dc.creatorJia, Sen_US
dc.creatorWang, Yen_US
dc.creatorHien, Wong, Nen_US
dc.creatorLiang, Tan, Cen_US
dc.creatorChen, Sen_US
dc.creatorWeng, Qen_US
dc.creatorMak, CMen_US
dc.date.accessioned2024-07-26T01:39:58Z-
dc.date.available2024-07-26T01:39:58Z-
dc.identifier.issn0378-7788en_US
dc.identifier.urihttp://hdl.handle.net/10397/108142-
dc.language.isoenen_US
dc.publisherElsevier BVen_US
dc.subjectDeep neural networken_US
dc.subjectIntegral radiation measurementen_US
dc.subjectMean radiant temperatureen_US
dc.subjectOutdoor thermal comforten_US
dc.subjectUrban heat islanden_US
dc.titleEstimation of mean radiant temperature across diverse outdoor spaces : a comparative study of different modeling approachesen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume310en_US
dc.identifier.doi10.1016/j.enbuild.2024.114068en_US
dcterms.abstractThe mean radiant temperature (Tmrt) is an important environmental parameter that affects the thermal comfort of human beings. However, both the measurement and estimation of Tmrt have some inherent challenges. This study evaluated the performance of five methods in estimating Tmrt, using data at 670 locations across 14 representative urban forms in Hong Kong. The evaluated methods include the customized globe thermometer method, recalibrated globe thermometer method, SOLWEIG simulation method, regression model, and neural network model. Values calculated from the integral radiation method were used as references for comparison. Results indicate that the customized and recalibrated globe thermometer methods and the SOLWEIG model consistently underestimate Tmrt throughout most of the day, with substantial errors observed at low sun elevations and sunlit sites. The regression model provides a moderate fit to the data. The deep neural network (DNN) model yields the highest estimation accuracy, with an R2 of 0.878 and a root mean square error (RMSE) of 1.92 ◦C. To assess the generalizability of the DNN model, an additional dataset from Singapore is employed, including hourly meteorological data from 28 measurement stations over a two-year period. The DNN model demonstrates strong consistency between modeled Tmrt and the reference across most of the sites, affirming its effectiveness in estimating Tmrt in complex urban environments.en_US
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationEnergy and buildings, 1 May 2024, v. 310, 114068en_US
dcterms.isPartOfEnergy and buildingsen_US
dcterms.issued2024-05-01-
dc.identifier.scopus2-s2.0-85188584300-
dc.identifier.eissn1872-6178en_US
dc.identifier.artn114068en_US
dc.description.validate202407 bcchen_US
dc.description.oaNot applicableen_US
dc.identifier.FolderNumbera3086-
dc.identifier.SubFormID49411-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2026-05-01en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2026-05-01
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

104
Citations as of Nov 10, 2025

SCOPUSTM   
Citations

10
Citations as of Dec 19, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.