Please use this identifier to cite or link to this item:
http://hdl.handle.net/10397/108086
| Title: | Mechanisms of multi-bandgap inertial amplification applied in metamaterial sandwich plates | Authors: | Gao, L Mak, CM Ma, KW Cai, Chenzhi |
Issue Date: | 1-Sep-2024 | Source: | International journal of mechanical sciences, 1 Sept 2024, v. 277, 109424 | Abstract: | The design concept of integrating locally resonant metamaterials with sandwich plates has demonstrated promising prospects in the development of lightweight, load-bearing structures endowed with excellent capabilities for noise and vibration attenuation. However, achieving low-frequency vibration attenuation in the locally resonant metamaterial sandwich plates remains a challenging task that frequently requires the inclusion of additional centralized mass or heavy local resonators. This study proposes a novel multi-bandgap metamaterial sandwich plate with the lever-type inertial amplification mechanism (LIA-MMSP) for achieving the low-frequency vibration attenuation. Compared with the metamaterial sandwich plates incorporating multi-frequency local resonators (LR-MMSP) with equivalent additional mass, the LIA-MMSP exhibits the ability to achieve lower-frequency multiple bandgaps. The theoretical dynamic model is employed to elucidate the underlying mechanism behind the generation of multiple bandgaps at lower frequencies in the LIA-MMSP. The vibration attenuation performances of the LIA-MMSP are analyzed through both the finite element method and experiment study. The effect of various parameters on the vibration transmission characteristics of the LIA-MMSP is studied. The results show that the boundary frequencies of the LIA-MMSP are precisely one of the lever ratios of the LR-MMSP. By altering the lever ratio within the LIA-MMSP, precise fine-tuning and optimization of the low-frequency multiple bandgaps are achievable. When the attached mass is constrained, increasing the lever ratio enables the achievement of lower bandgaps. In addition, as the eigenfrequency of the primary lever-type IA resonator fp and secondary lever-type IA resonator fs decrease, both the first attenuation zone (AZ1) and the second attenuation zone (AZ2) of the LIA-MMSP shift towards lower frequencies. However, as fp decreases, the width of AZ1 expands, and the minimum accelerations within the AZs decrease even further. Moreover, a normalized comparison provides validation of the exceptional performance of the proposed LIA-MMSP in terms of lightweight design, as well as its ability to achieve low-frequency broadband vibration attenuation. | Keywords: | Inertial amplification Lever-type design Locally resonant bandgaps Low-frequency vibration attenuation Metamaterial sandwich plate Structural mechanics |
Publisher: | Elsevier Ltd | Journal: | International journal of mechanical sciences | ISSN: | 0020-7403 | EISSN: | 1879-2162 | DOI: | 10.1016/j.ijmecsci.2024.109424 |
| Appears in Collections: | Journal/Magazine Article |
Show full item record
Page views
67
Citations as of Nov 10, 2025
WEB OF SCIENCETM
Citations
19
Citations as of Dec 18, 2025
Google ScholarTM
Check
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.



