Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/108085
Title: Effects of envelope features on building surface temperature and ventilation performance in 2D street canyons
Authors: Cui, D
Liang, G
Hang, J
Yang, Z
Huang, Z
Mak, CM 
Issue Date: Jul-2024
Source: Urban climate, July 2024, v. 56, 102011
Abstract: The focus of previous research on urban ventilation has primarily been on flat-facade buildings. However, envelope features can affect the surface temperature and ventilation performance. We conducted an outdoor scaled experiment to investigate the impact of different envelope features on the thermal and wind environment in street canyons. The envelope features effectively reduce the surface temperature, with the impact order being as follows: overhangs > wing walls > balconies. The dimensionless parameter B is used to assess the impacts of momentum and buoyancy on urban ventilation. In a wide canyon, when B < Bc (the critical value of different envelope feature cases), the momentum dominates urban airflow. The Bc values of the flat-façade, balcony, overhang, and wing wall were 0.335, 1.084, 1.320, and 1.529, respectively, while the normalized horizontal velocities (U0.25H/U2H) of the flat-façade, balcony, overhang, and wing wall street canyons remained relatively constant (i.e., 0.66, 0.54, 0.62, and 0.57, respectively). When B > Bc, under the combined influence of momentum and buoyancy, U0.25H/U2H increases nonlinearly with B. Moreover, street canyons with envelope features exhibit a smaller Bc value than flat-facade canyons. These findings provide valuable insights into the effects of envelope features on thermal environments and urban ventilation.
Keywords: Buoyancy effect
Envelope features
Momentum
Outdoor scaled experiment
Street canyon
Ventilation performance
Publisher: Elsevier BV
Journal: Urban climate 
EISSN: 2212-0955
DOI: 10.1016/j.uclim.2024.102011
Appears in Collections:Journal/Magazine Article

Open Access Information
Status embargoed access
Embargo End Date 2026-07-31
Access
View full-text via PolyU eLinks SFX Query
Show full item record

Page views

91
Citations as of Nov 10, 2025

SCOPUSTM   
Citations

7
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

6
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.