Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/108038
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Building Environment and Energy Engineeringen_US
dc.contributorMainland Development Officeen_US
dc.creatorLiu, Yen_US
dc.creatorNiu, Hen_US
dc.creatorXu, Cen_US
dc.creatorHuang, Xen_US
dc.date.accessioned2024-07-23T04:07:31Z-
dc.date.available2024-07-23T04:07:31Z-
dc.identifier.issn1359-4311en_US
dc.identifier.urihttp://hdl.handle.net/10397/108038-
dc.language.isoenen_US
dc.publisherPergamon Pressen_US
dc.rights© 2022 Elsevier Ltd. All rights reserved.en_US
dc.rights© 2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.rightsThe following publication Liu, Y., Niu, H., Xu, C., & Huang, X. (2022). Thermal runaway propagation in linear battery module under low atmospheric pressure. Applied Thermal Engineering, 216, 119086 is available at https://doi.org/10.1016/j.applthermaleng.2022.119086.en_US
dc.subjectFire hazardsen_US
dc.subjectLithium-ion batteryen_US
dc.subjectPropagation speeden_US
dc.subjectSub-atmospheric pressureen_US
dc.titleThermal runaway propagation in linear battery module under low atmospheric pressureen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume216en_US
dc.identifier.doi10.1016/j.applthermaleng.2022.119086en_US
dcterms.abstractUnderstanding the mechanism of battery thermal runaway propagation under low atmospheric pressure is critical for the safe operation of battery energy storage systems. This work explores the thermal runaway propagation over a linear arrayed 18650-type lithium-ion battery module in a low-pressure chamber. The effects of ambient pressure (0.1 kPa to 100 kPa), temperature, and electrical connection mode are comprehensively investigated. Results indicate that the propensity of thermal runaway propagation for the open-circuit battery array is much lower, and it only occurs at high ambient temperature and ambient pressure. For parallel-connected battery modules, as ambient pressure decreases, the rate of thermal-runaway propagation first increases due to the reduced environmental cooling (i.e., thermal controlled). It then falls due to lower remaining electrolytes after venting (i.e., venting controlled). The pressure of maximum thermal runaway propagation speed is 60 kPa. The maximum time interval for the thermal runaway of the next cell is about 7 min. A simplified heat transfer analysis was proposed to explain the trend and limits of thermal runaway propagation and reveal the dual effect of pressure. This work provides new insights into thermal runaway propagation, which can deepen the understanding of battery fire safety under low pressure and inspire the thermal-safety design of the lithium-ion battery modules.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationApplied thermal engineering, 5 Nov. 2022, v. 216, 119086en_US
dcterms.isPartOfApplied thermal engineeringen_US
dcterms.issued2022-11-05-
dc.identifier.scopus2-s2.0-85136518140-
dc.identifier.eissn1873-5606en_US
dc.identifier.artn119086en_US
dc.description.validate202407 bcwhen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumbera3084f-
dc.identifier.SubFormID49480-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Liu_Thermal_Runaway_PropagatiIn.pdfPre-Published version2.12 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

43
Citations as of Apr 14, 2025

Downloads

15
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

44
Citations as of Sep 12, 2025

WEB OF SCIENCETM
Citations

27
Citations as of Oct 17, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.