Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/108026
DC FieldValueLanguage
dc.contributorDepartment of Building Environment and Energy Engineering-
dc.creatorZhang, Ten_US
dc.creatorDing, Fen_US
dc.creatorWang, Zen_US
dc.creatorXiao, Fen_US
dc.creatorLu, CXen_US
dc.creatorHuang, Xen_US
dc.date.accessioned2024-07-23T01:37:36Z-
dc.date.available2024-07-23T01:37:36Z-
dc.identifier.issn0952-1976en_US
dc.identifier.urihttp://hdl.handle.net/10397/108026-
dc.language.isoenen_US
dc.publisherPergamon Pressen_US
dc.subjectBuilding fireen_US
dc.subjectComputer visionen_US
dc.subjectDeep learningen_US
dc.subjectFusion transformeren_US
dc.subjectSmart firefightingen_US
dc.titleForecasting backdraft with multimodal method : fusion of fire image and sensor dataen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume132en_US
dc.identifier.doi10.1016/j.engappai.2024.107939en_US
dcterms.abstractExperienced firefighters can fuse the flame image, smoke pattern, and varying temperature, sound, and odour in complex and fast-changing fire scenes to foresee flashover and explosion. This study mimics firefighters and proposes a novel transformer algorithm for the fusion of fire images and temperature sensor data to forecast the backdraft explosion in a building fire. The model of backdraft forecast is demonstrated with full-scale fire tests. After training 2674 fire scenarios with various fire intensities and images from various view angles, the Fusion-Transformer model can forecast the risk of backdraft with an overall accuracy of 84%. Moreover, the occurrence time and explosion scale of backdraft can be predicted with the Mean Absolute Error (MAE) of 1.6 s and 0.14 m, respectively. Compared with the single modal model, the fusion of fire images and temperature sensor data improves the accuracy of backdraft forecast by over 50%. This work demonstrates the use of a transformer algorithm in forecasting fire evolution and critical events. It also bridges the gap between data fusion methods and fire forecast, which inspires future universal AI-driven smart firefighting practices.-
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationEngineering applications of artificial intelligence, June 2024, v. 132, 107939en_US
dcterms.isPartOfEngineering applications of artificial intelligenceen_US
dcterms.issued2024-06-
dc.identifier.scopus2-s2.0-85183454251-
dc.identifier.eissn1873-6769en_US
dc.identifier.artn107939en_US
dc.description.validate202407 bcwh-
dc.identifier.FolderNumbera3084b, a3093a-
dc.identifier.SubFormID49433, 49566-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2026-06-30en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2026-06-30
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

89
Citations as of Nov 10, 2025

SCOPUSTM   
Citations

17
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

14
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.