Please use this identifier to cite or link to this item:
http://hdl.handle.net/10397/108020
| DC Field | Value | Language |
|---|---|---|
| dc.contributor | Department of Building Environment and Energy Engineering | en_US |
| dc.creator | Zhang, X | - |
| dc.creator | Chen, X | - |
| dc.creator | Ding, Y | - |
| dc.creator | Zhang, Y | - |
| dc.creator | Wang, Z | - |
| dc.creator | Shi, J | - |
| dc.creator | Johansson, N | - |
| dc.creator | Huang, X | - |
| dc.date.accessioned | 2024-07-23T01:36:22Z | - |
| dc.date.available | 2024-07-23T01:36:22Z | - |
| dc.identifier.issn | 0925-7535 | en_US |
| dc.identifier.uri | http://hdl.handle.net/10397/108020 | - |
| dc.language.iso | en | en_US |
| dc.publisher | Elsevier | en_US |
| dc.subject | Digital twin | en_US |
| dc.subject | Fire evacuation | en_US |
| dc.subject | Fire load distribution | en_US |
| dc.subject | Machine learning | en_US |
| dc.subject | Tunnel fire safety | en_US |
| dc.subject | Vehicle fire | en_US |
| dc.title | Smart real-time evaluation of tunnel fire risk and evacuation safety via computer vision | en_US |
| dc.type | Journal/Magazine Article | en_US |
| dc.identifier.volume | 177 | en_US |
| dc.identifier.doi | 10.1016/j.ssci.2024.106563 | en_US |
| dcterms.abstract | The distribution of vehicles during a tunnel fire is a crucial factor that affects fire development and hazards, as well as the following evacuation and rescue operations. This work proposed a novel method using computer vision for assessing the real-time tunnel fire risk and evacuation safety by considering the classification and entry flow of vehicles. The proposed system utilizes YOLOv7 and DeepSORT for vehicle detection, classification, and tracking to enable a real-time digital twin for tunnel fire safety management. Vehicles are divided into 10 categories, in terms of their size, usage, number of passengers, fuel load, and peak fire HRR. After monitoring the vehicle flow at the tunnel portals, the real-time vehicle and fire load distribution are predicted. Then, the real-time tunnel fire scenarios and the safety of the evacuation process are evaluated based on the distribution of vehicles. The system is demonstrated in real road tunnels with traffic video cameras and exhibits a robust performance. The proposed vision-based real-time tunnel fire risk evaluation enables intelligent daily fire safety management and supports fire emergency response and decision-making. | en_US |
| dcterms.accessRights | embargoed access | en_US |
| dcterms.bibliographicCitation | Safety science, Sept. 2024, v. 177, 106563 | en_US |
| dcterms.isPartOf | Safety science | en_US |
| dcterms.issued | 2024-09 | - |
| dc.identifier.scopus | 2-s2.0-85195817515 | - |
| dc.identifier.artn | 106563 | en_US |
| dc.description.validate | 202407 bcwh | en_US |
| dc.description.oa | Not applicable | en_US |
| dc.identifier.FolderNumber | a3082b | - |
| dc.identifier.SubFormID | 49419 | - |
| dc.description.fundingSource | RGC | en_US |
| dc.description.pubStatus | Published | en_US |
| dc.date.embargo | 2027-09-30 | en_US |
| dc.description.oaCategory | Green (AAM) | en_US |
| Appears in Collections: | Journal/Magazine Article | |
Page views
47
Citations as of Apr 14, 2025
SCOPUSTM
Citations
30
Citations as of Dec 19, 2025
WEB OF SCIENCETM
Citations
3
Citations as of Jan 9, 2025
Google ScholarTM
Check
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.



