Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/108011
DC FieldValueLanguage
dc.contributorDepartment of Building Environment and Energy Engineering-
dc.contributorMainland Development Office-
dc.creatorLiu, Yen_US
dc.creatorZhang, Len_US
dc.creatorHuang, Xen_US
dc.creatorHao, Men_US
dc.creatorHuang, Xen_US
dc.date.accessioned2024-07-23T01:36:18Z-
dc.date.available2024-07-23T01:36:18Z-
dc.identifier.issn2352-152Xen_US
dc.identifier.urihttp://hdl.handle.net/10397/108011-
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.subjectBattery safetyen_US
dc.subjectHeating poweren_US
dc.subjectThermal safety testsen_US
dc.subjectThermal stabilityen_US
dc.titleLaser-induced thermal runaway dynamics of cylindrical lithium-ion batteryen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume86en_US
dc.identifier.doi10.1016/j.est.2024.111337en_US
dcterms.abstractLaser is a precise, remote, and non-invasive heating method that can initiate thermal runaway of lithium-ion batteries in safety tests. This study systemically explores the thermal runaway of cylindrical cells induced by constant laser irradiation up to 20 W and 1.6 MW m−2 within a 4-mm diameter spot. Results indicate that thermal runaway intensity is relatively insensitive to the laser power but controlled by the battery state of charge (SOC). The overall heating efficiency of the laser (78 ± 7 %) is higher than that of the oven and comparable to contact heating methods. As the battery SOC decreases from 100 % to 30 %, the minimum laser output power for thermal runaway increases from 9.5 W to 15 W, corresponding to the effective battery heating power rising from 6.7 W to 11.1 W. These critical values hold significance in evaluating the thermal hazards associated with localized hotspot failures. Finally, the strategy for applying the laser to trigger the battery thermal runaway is proposed based on a simplified heat transfer model. This work reveals the battery fire risk under high-intensity spot heating and provides a valuable scientific basis for using laser heating in battery safety test standards.-
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationJournal of energy storage, 10 May 2024, v. 86, 111337en_US
dcterms.isPartOfJournal of energy storageen_US
dcterms.issued2024-05-10-
dc.identifier.scopus2-s2.0-85188604744-
dc.identifier.eissn2352-1538en_US
dc.identifier.artn111337en_US
dc.description.validate202407 bcwh-
dc.identifier.FolderNumbera3084b-
dc.identifier.SubFormID49426-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2026-05-10en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2026-05-10
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

90
Citations as of Nov 10, 2025

SCOPUSTM   
Citations

22
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

22
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.