Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/108009
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Building Environment and Energy Engineering-
dc.creatorChen, Y-
dc.creatorWang, Z-
dc.creatorLin, S-
dc.creatorQin, Y-
dc.creatorHuang, X-
dc.date.accessioned2024-07-23T01:36:17Z-
dc.date.available2024-07-23T01:36:17Z-
dc.identifier.urihttp://hdl.handle.net/10397/108009-
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.rights© 2023 TheAuthor(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).en_US
dc.rightsThe following publication Chen, Y., Wang, Z., Lin, S., Qin, Y., & Huang, X. (2023). A review on biomass thermal-oxidative decomposition data and machine learning prediction of thermal analysis. Cleaner Materials, 100206 is available at https://doi.org/10.1016/j.clema.2023.100206.en_US
dc.subjectArtificial intelligenceen_US
dc.subjectBiofuel databaseen_US
dc.subjectOxidative degradationen_US
dc.subjectPyrolysisen_US
dc.subjectThermogravimetric analysisen_US
dc.titleA review on biomass thermal-oxidative decomposition data and machine learning prediction of thermal analysisen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume9-
dc.identifier.doi10.1016/j.clema.2023.100206-
dcterms.abstractThermochemical conversion is the most economical approach to recovering energy and alternative fuels from biomass feedstock. This work first reviews the literature data on thermal-oxidative decomposition for common biomass types and forms a database of 18 parameters, including element, proximate, and thermogravimetric analysis (TGA). Then, an Artificial Neural Network (ANN) model is developed for the prediction of TGA data. Pearson correlation coefficient analysis reveals that the influence of environment heating rate on biomass thermal decomposition is larger than that of fuel properties. By inputting biomass elemental/proximate analysis and heating rate, the ANN model successfully predicts 8 key TGA parameters, namely, pyrolysis-onset temperature, peak pyrolysis temperature, oxidation-dominant temperature, peak oxidation temperature, oxidation-end temperature, peak pyrolysis rate, oxidation-dominant rate, and peak oxidation rate, with R2 values greater than 0.98. A better performance can be achieved when all ten input features are considered. Final, an open-access online software, Intelligent Fuel Thermal Analysis (IFTA), is developed to predict thermal-oxidative decomposition across a wide range of heating rates and biomass types. This work provides a better understanding of biomass thermal-oxidative decomposition dynamics and a shortcut to obtain key parameters of biomass degradation without TGA tests.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationCleaner materials, Sept. 2023, v. 9, 100206-
dcterms.isPartOfCleaner materials-
dcterms.issued2023-09-
dc.identifier.scopus2-s2.0-85171188522-
dc.identifier.eissn2772-3976-
dc.identifier.artn100206-
dc.description.validate202407 bcwh-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumbera3084aen_US
dc.identifier.SubFormID49445en_US
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryCCen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
1-s2.0-S2772397623000394-main.pdf7.13 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

51
Citations as of Apr 14, 2025

Downloads

21
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

14
Citations as of Sep 12, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.