Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/107996
DC FieldValueLanguage
dc.contributorDepartment of Building Environment and Energy Engineering-
dc.creatorHe, CXen_US
dc.creatorLiu, YHen_US
dc.creatorHuang, XYen_US
dc.creatorWan, SBen_US
dc.creatorChen, Qen_US
dc.creatorSun, Jen_US
dc.creatorZhao, TSen_US
dc.date.accessioned2024-07-23T01:36:09Z-
dc.date.available2024-07-23T01:36:09Z-
dc.identifier.issn0196-8904en_US
dc.identifier.urihttp://hdl.handle.net/10397/107996-
dc.language.isoenen_US
dc.publisherPergamon Pressen_US
dc.subjectGenetic algorithmen_US
dc.subjectLithium-ion batteriesen_US
dc.subjectRC networksen_US
dc.subjectThermal managementen_US
dc.subjectThermal resistance networksen_US
dc.titleA transient multi-path decentralized resistance-capacity network model for prismatic lithium-ion batteries based on genetic algorithm optimizationen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume300en_US
dc.identifier.doi10.1016/j.enconman.2023.117894en_US
dcterms.abstractBattery thermal management is crucial for preventing the safety issues of lithium-ion batteries. Due to the simple modeling and fast calculation speed, the thermal resistance-capacity (RC) network model is broadly applied in the design of battery thermal management systems. However, the simplification of heat flow paths and the lumped definition of thermal capacity in traditional RC models result in large temperature prediction errors, which fail to reflect the thermal response in complex and diverse heat transfer situations. To improve the prediction accuracy, a decentralized centroid multi-path RC network model is constructed for a typical prismatic lithium-ion battery. This novel model incorporates multiple heat flow paths with additional thermal resistances and legitimately decentralizes the lumped heat capacity to other surface center points, resulting in a more realistic thermal response. A genetic algorithm is employed to determine the unknown thermal resistances and heat capacities at the attributed nodes. Results show that compared to the traditional RC network model, the multi-path decentralized RC network model can reduce the temperature prediction error from 4.24 to 0.95 ℃. This more refined modeling approach extends the application scope of thermal resistance network models to more complex scenarios while maintaining efficient simulation speed, which enables the attainment of more accurate and reliable onboard temperature predictions for lithium-ion power systems.-
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationEnergy conversion and management, 15 Jan. 2024, v. 300, 117894en_US
dcterms.isPartOfEnergy conversion and managementen_US
dcterms.issued2024-01-15-
dc.identifier.scopus2-s2.0-85182224881-
dc.identifier.eissn1879-2227en_US
dc.identifier.artn117894en_US
dc.description.validate202407 bcwh-
dc.identifier.FolderNumbera3084b-
dc.identifier.SubFormID49441-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2026-01-15en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2026-01-15
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

70
Citations as of Nov 10, 2025

SCOPUSTM   
Citations

13
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

13
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.