Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/107995
Title: A review of fiber-based supercapacitors and sensors for energy-autonomous system
Authors: Tawiah, B 
Seidu, RK 
Asinyo, BK
Fei, B 
Issue Date: 1-Mar-2024
Source: Journal of power sources, 1 Mar. 2024, v. 595, 234069
Abstract: Advancements in wearable technologies in the past few years have influenced the fabrication of fiber-based supercapacitors and sensors for next-generation energy-autonomous systems. There has been an increase in research on conductive electrodes on fibers for sensing ability and storing of energy based on their ease of fabrication, stretch and flexible abilities. These replace the conventional rigid devices that limit the flow of air and provide discomfort when used in clothing. Fiber-based sensors are generally fabricated to detect environmental and physiological changes in real-time. They are mostly fabricated for use as temperature, photo, chemical, and tactile sensors using different applications, and materials. A variety of wearable physical, chemical, biological, and optical sensors that have been described as self-powered or energy-autonomous in recent years rely on these technologies, as well as energy generators, electrochemical energy storage (EES) systems, wireless power technologies, self-powered sensors, and hybrid energy systems that combine energy generators and electrochemical energy storage. This paper highlights a comprehensive review of the recent advancements in fiber-based and sensors for supercapacitors energy-autonomous systems. The paper further highlights fiber-based material properties, such as lightweight, flexibility, high surface area, and their impact on energy density and stability. The paper also discusses the various fabrication methods for fiber-based supercapacitors and sensors, including electrospinning, dip-coating, and self-assembly. Finally, the paper elucidates future directions of fiber-based sensors and supercapacitors for electrochemical energy storage and visa vis sustainable production.
Keywords: Electrochemical energy storage
Energy autonomous systems
Fiber based sensors
Fiber-based supercapacitors
Wearable technologies
Publisher: Elsevier BV
Journal: Journal of power sources 
ISSN: 0378-7753
EISSN: 1873-2755
DOI: 10.1016/j.jpowsour.2024.234069
Appears in Collections:Journal/Magazine Article

Open Access Information
Status embargoed access
Embargo End Date 2026-03-01
Access
View full-text via PolyU eLinks SFX Query
Show full item record

Page views

76
Citations as of Nov 10, 2025

SCOPUSTM   
Citations

34
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

32
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.