Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/107981
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Chinese and Bilingual Studiesen_US
dc.creatorShi, Ken_US
dc.creatorChen, Gen_US
dc.creatorGu, Jen_US
dc.creatorQian, Len_US
dc.creatorZhou, Gen_US
dc.date.accessioned2024-07-22T07:30:47Z-
dc.date.available2024-07-22T07:30:47Z-
dc.identifier.issn1865-0929en_US
dc.identifier.urihttp://hdl.handle.net/10397/107981-
dc.description9th China Health Information Processing Conference, CHIP 2023, Hangzhou, China, October 27-29, 2023,en_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.rights© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024en_US
dc.rightsThis version of the proceeding paper has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use(https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms), but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: https://doi.org/10.1007/978-981-99-9864-7_1.en_US
dc.subjectClinical Texten_US
dc.subjectCross-Lingual NERen_US
dc.subjectMachine Reading Comprehensionen_US
dc.subjectMixed Language Queryen_US
dc.titleCross-lingual name entity recognition from clinical text using mixed language queryen_US
dc.typeConference Paperen_US
dc.identifier.spage3en_US
dc.identifier.epage21en_US
dc.identifier.volume1993en_US
dc.identifier.doi10.1007/978-981-99-9864-7_1en_US
dcterms.abstractCross-lingual Named Entity Recognition (Cross-Lingual NER) addresses the challenge of NER with limited annotated data in low-resource languages by transferring knowledge from high-resource languages. Particularly, in the clinical domain, the lack of annotated corpora for Cross-Lingual NER hinders the development of cross-lingual clinical text named entity recognition. By leveraging the English clinical text corpus I2B2 2010 and the Chinese clinical text corpus CCKS2019, we construct a cross-lingual clinical text named entity recognition corpus (CLC-NER) via label alignment. Further, we propose a machine reading comprehension framework for Cross-Lingual NER using mixed language queries to enhance model transfer capabilities. We conduct comprehensive experiments on the CLC-NER corpus, and the results demonstrate the superiority of our approach over other systems.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationCommunications in computer and information science, 2024, v. 1993, p. 3-21en_US
dcterms.isPartOfCommunications in computer and information scienceen_US
dcterms.issued2024-
dc.identifier.scopus2-s2.0-85186660504-
dc.relation.conferenceChina Health Information Processing Conference [CHIP]en_US
dc.identifier.eissn1865-0937en_US
dc.description.validate202407 bcchen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumbera3068a-
dc.identifier.SubFormID49354-
dc.description.fundingSourceSelf-fundeden_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Conference Paper
Files in This Item:
File Description SizeFormat 
Shi_Cross-lingual_Name_Entity.pdfPre-Published version1.18 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

75
Citations as of Apr 14, 2025

Downloads

7
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

2
Citations as of Jan 30, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.