Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/107886
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Biology and Chemical Technologyen_US
dc.contributorResearch Institute for Smart Energyen_US
dc.creatorLuo, Den_US
dc.creatorLi, Len_US
dc.creatorZhou, Een_US
dc.creatorWong, WYen_US
dc.creatorKyaw, AKKen_US
dc.date.accessioned2024-07-16T06:56:07Z-
dc.date.available2024-07-16T06:56:07Z-
dc.identifier.urihttp://hdl.handle.net/10397/107886-
dc.language.isoenen_US
dc.publisherRoyal Society of Chemistryen_US
dc.rights© 2023 The Author(s). Published by the Royal Society of Chemistryen_US
dc.rightsThis article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.en_US
dc.rightsThe following publication Luo, D., Li, L., Zhou, E., Wong, W.-Y., & Kyaw, A. K. K. (2023). Additive engineering for high-performance P3HT:non-fused ring electron acceptor organic solar cell [10.1039/D3MA00541K]. Materials Advances, 4(19), 4444-4454 is available at https://doi.org/10.1039/D3MA00541K.en_US
dc.titleAdditive engineering for high-performance P3HT : non-fused ring electron acceptor organic solar cellen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage4444en_US
dc.identifier.epage4454en_US
dc.identifier.volume4en_US
dc.identifier.issue19en_US
dc.identifier.doi10.1039/d3ma00541ken_US
dcterms.abstractIn this study, we address the challenge of improving the power conversion efficiency (PCE) of P3HT-based organic solar cells (OSCs) by modulating the phase separation morphology. We synthesize a non-fused ring electron acceptor (NFREA), MOT, with an ultra-narrow bandgap and absorption up to 1000 nm, and pair it with P3HT to prepare OSCs. We find that solvent additives with similar structures can induce different phase separation and morphology in the P3HT:MOT blend, leading to distinct exciton dissociation and device performance. Among the additives tested, 1-methoxynaphthalene (1-MN) induces better phase separation of P3HT:MOT blend, resulting in a PCE of 6.98%, which is higher than that of devices processed with 1-chloronaphthalene (1-CN) and 1-phenylnaphthalene (1-PN) additives. Detailed photoelectric properties and exciton dissociation process analysis indicate that the higher performance processed by 1-MN is attributed to the preferable morphology induced by the phase separation. Our work not only reports a new NFREA to pair with P3HT but also develops a simple additive engineering strategy for regulating the morphology in P3HT-based OSCs.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationMaterials advances, 7 Oct. 2023, v. 4, no. 19, p. 4444-4454en_US
dcterms.isPartOfMaterials advancesen_US
dcterms.issued2023-10-07-
dc.identifier.scopus2-s2.0-85171145442-
dc.identifier.eissn2633-5409en_US
dc.description.validate202407 bcchen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumbera3015a-
dc.identifier.SubFormID49186-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryCCen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
d3ma00541k.pdf4.13 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

45
Citations as of Apr 14, 2025

Downloads

11
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

6
Citations as of Sep 12, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.