Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/107885
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Biology and Chemical Technologyen_US
dc.contributorResearch Institute for Smart Energyen_US
dc.creatorLiang, Sen_US
dc.creatorZhong, Xen_US
dc.creatorZhong, Zen_US
dc.creatorDeng, Hen_US
dc.creatorWong, WYen_US
dc.date.accessioned2024-07-16T06:56:07Z-
dc.date.available2024-07-16T06:56:07Z-
dc.identifier.issn0926-3373en_US
dc.identifier.urihttp://hdl.handle.net/10397/107885-
dc.language.isoenen_US
dc.publisherElsevier BVen_US
dc.rights© 2023 Elsevier B.V. All rights reserved.en_US
dc.rights© 2023. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.rightsThe following publication Liang, S., Zhong, X., Zhong, Z., Deng, H., & Wong, W.-Y. (2023). Highly dispersed nickel site catalysts for diluted CO2 photoreduction to CO with nearly 100% selectivity. Applied Catalysis B: Environmental, 337, 122958 is available at https://doi.org/10.1016/j.apcatb.2023.122958.en_US
dc.subjectCO2 photoreductionen_US
dc.subjectDiluted CO2en_US
dc.subjectHighly selectivityen_US
dc.subjectSingle-atom Ni2+en_US
dc.subjectVisible-light photocatalysisen_US
dc.titleHighly dispersed nickel site catalysts for diluted CO₂ photoreduction to CO with nearly 100% selectivityen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume337en_US
dc.identifier.doi10.1016/j.apcatb.2023.122958en_US
dcterms.abstractPhotoconversion of CO2 into value-added fuels has aroused widespread interest; however, this process is significantly limited by the inefficient thermodynamics and sluggish reaction dynamics in the diluted CO2. To circumvent these obstacles, we design a bipyridine-based polyimide polymer for anchoring single Ni site for diluted CO2 photoreduction. The desired Ni single atomic catalysts achieve high generation activity of ∼ 2262 μmol/h with apparent quantum efficiency (A.Q.E.) of 0.20% for CO2-to-CO in 0.1 atm CO2 pressure. No measurable H2 is produced in the catalytic process, affording nearly 100% CO selectivity over water splitting. This superior activity and selectivity outperform most previous atomical catalysts. Mechanistic analyses elucidate that the highly dispersed Ni atoms act as active sites for effective CO2 binding and activation, and stabilize the rate-determining step of intermediates for CO generation. This work discloses the relationship between catalytic properties and single atoms for efficient solar-driven diluted CO2 reduction.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationApplied catalysis B : environmental, 15 Nov. 2023, v. 337, 122958en_US
dcterms.isPartOfApplied catalysis B : environmentalen_US
dcterms.issued2023-11-15-
dc.identifier.scopus2-s2.0-85161725010-
dc.identifier.eissn1873-3883en_US
dc.identifier.artn122958en_US
dc.description.validate202407 bcchen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumbera3015a-
dc.identifier.SubFormID49184-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Liang_Highly_Dispersed_Nickel.pdfPre-Published version2.04 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

60
Citations as of Nov 10, 2025

SCOPUSTM   
Citations

19
Citations as of Dec 5, 2025

WEB OF SCIENCETM
Citations

19
Citations as of Dec 4, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.