Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/107825
DC FieldValueLanguage
dc.contributorDepartment of Logistics and Maritime Studies-
dc.creatorYang, Y-
dc.creatorYan, R-
dc.creatorWang, S-
dc.date.accessioned2024-07-12T06:07:04Z-
dc.date.available2024-07-12T06:07:04Z-
dc.identifier.issn0360-8352-
dc.identifier.urihttp://hdl.handle.net/10397/107825-
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.subjectEstimate-then-optimizeen_US
dc.subjectK nearest neighboren_US
dc.subjectMaritime transportationen_US
dc.subjectPrescriptive analyticsen_US
dc.subjectVessel inspectionen_US
dc.titlePrescriptive analytics models for vessel inspection planning in maritime transportationen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume190-
dc.identifier.doi10.1016/j.cie.2024.110012-
dcterms.abstractPort state control (PSC) inspections are crucial for maritime safety and pollution reduction. The inspection process involves identifying high-risk vessels, allocating surveyors, and conducting onboard checks. This study aims to optimize the selection and assignment process through a two-stage framework, balancing the benefits of identifying deficiencies against the costs of inspection delays. Initially, we employ a predict-then-optimize approach, predicting the number of vessel deficiencies using a k-nearest neighbor (kNN) model, which informs the inspection decisions. However, due to the nonlinear nature of the optimization in relation to predicted values, we also explore an estimate-then-optimize framework that estimates distributions of potential deficiencies. We enhance two prescriptive analytics models and introduce an advanced global model with a pre-processing algorithm for better distribution estimation. A case study using data from the Hong Kong port demonstrates that the estimate-then-optimize models surpass the predict-then-optimize approach, offering solutions closer to the optimal policy. Furthermore, our improved model outperforms existing methods, proving more effective in practical applications.-
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationComputers and industrial engineering, Apr. 2024, v. 190, 110012-
dcterms.isPartOfComputers and industrial engineering-
dcterms.issued2024-04-
dc.identifier.scopus2-s2.0-85187198768-
dc.identifier.eissn1879-0550-
dc.identifier.artn110012-
dc.description.validate202407 bcch-
dc.identifier.FolderNumbera2987cen_US
dc.identifier.SubFormID49060en_US
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2027-04-30en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2027-04-30
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

70
Citations as of Nov 10, 2025

SCOPUSTM   
Citations

8
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

8
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.