Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/107766
DC FieldValueLanguage
dc.contributorDepartment of Mechanical Engineeringen_US
dc.contributorMainland Development Officeen_US
dc.contributorSchool of Fashion and Textilesen_US
dc.creatorZhao, Fen_US
dc.creatorZhou, Yen_US
dc.creatorRen, Fen_US
dc.creatorTang, Hen_US
dc.creatorWang, Zen_US
dc.date.accessioned2024-07-12T01:21:23Z-
dc.date.available2024-07-12T01:21:23Z-
dc.identifier.issn0029-8018en_US
dc.identifier.urihttp://hdl.handle.net/10397/107766-
dc.language.isoenen_US
dc.publisherPergamon Pressen_US
dc.subjectActive flow controlen_US
dc.subjectDeep reinforcement learningen_US
dc.subjectLift mitigationen_US
dc.subjectSelf-rotationen_US
dc.subjectWake flowen_US
dc.titleMitigating the lift of a circular cylinder in wake flow using deep reinforcement learning guided self-rotationen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume306en_US
dc.identifier.doi10.1016/j.oceaneng.2024.118138en_US
dcterms.abstractThis study applies deep reinforcement learning (DRL) to reduce lift forces on a circular object in the wake of another. The proximal policy optimization (PPO) method is utilized to control the self-rotation of the cylinder using the feedback of sensors. The flow environment is simulated using a high-fidelity computational fluid dynamics (CFD) solver, accelerated by graphics processing unit (GPU). Remarkably, even in the most challenging tandem distance L∗ = 5.0, the DRL agent devises an effective strategy within 800 episodes, resulting in a 98% reduction in lift fluctuation. Flow structure analysis reveals that the learned policy speeds up the shear layer development of the rear cylinder, subsequently adjusting its interaction with the front cylinder's wake. Furthermore, the policy's generalization is assessed at different distances, observing a notable reduction in the effectiveness of lift fluctuation suppression (ranging from 75% to 80%). To enhance the generalization of trained strategies, we optimize the sensors distribution based on the Proper Orthogonal Decomposition (POD) analysis. This leads to faster convergence and consistently better performance, achieving over 88% reduction in lift fluctuation across various distances. This study sheds light on a promising approach for mitigating bluff-body vibrations in complex flows.en_US
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationOcean engineering, 15 Aug. 2024, v. 306, 118138en_US
dcterms.isPartOfOcean engineeringen_US
dcterms.issued2024-08-15-
dc.identifier.scopus2-s2.0-85192852786-
dc.identifier.artn118138en_US
dc.description.validate202407 bcwhen_US
dc.description.oaNot applicableen_US
dc.identifier.FolderNumbera2997-
dc.identifier.SubFormID49120-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2026-08-15en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2026-08-15
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

86
Citations as of Nov 10, 2025

SCOPUSTM   
Citations

8
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

8
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.