Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/107749
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.creatorLu, Jen_US
dc.creatorHu, Hen_US
dc.creatorZou, Yen_US
dc.creatorLu, Zen_US
dc.creatorLiu, Xen_US
dc.creatorZu, Ken_US
dc.creatorLi, Len_US
dc.date.accessioned2024-07-11T08:20:39Z-
dc.date.available2024-07-11T08:20:39Z-
dc.identifier.issn0254-9409en_US
dc.identifier.urihttp://hdl.handle.net/10397/107749-
dc.language.isoenen_US
dc.publisherGlobal Science Pressen_US
dc.rights© Global Science Pressen_US
dc.rightsThis is the accepted version of the following article: Jian Lu, Huaxuan Hu, Yuru Zou, Zhaosong Lu, Xiaoxia Liu, Keke Zu & Lin Li. (2024). A Nonlocal Kronecker-Basis-Representation Method for Low-Dose CT Sinogram Recovery. Journal of Computational Mathematics. 42 (4). 1080-1108, which has been published in https://doi.org/10.4208/jcm.2301-m2022-0091.en_US
dc.subjectKronecker-basis-representationen_US
dc.subjectLow-dose computed tomographyen_US
dc.subjectLow-rank approximationen_US
dc.subjectNoise-generating-mechanismen_US
dc.titleA nonlocal Kronecker-basis-representation method for low-dose CT sinogram recoveryen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage1080en_US
dc.identifier.epage1108en_US
dc.identifier.volume42en_US
dc.identifier.issue4en_US
dc.identifier.doi10.4208/jcm.2301-m2022-0091en_US
dcterms.abstractLow-dose computed tomography (LDCT) contains the mixed noise of Poisson and Gaussian, which makes the image reconstruction a challenging task. In order to describe the statistical characteristics of the mixed noise, we adopt the sinogram preprocessing as a standard maximum a posteriori (MAP). Based on the fact that the sinogram of LDCT has nonlocal self-similarity property, it exhibits low-rank characteristics. The conventional way of solving the low-rank problem is implemented in matrix forms, and ignores the correlations among similar patch groups. To avoid this issue, we make use of a nonlocal Kronecker-Basis-Representation (KBR) method to depict the low-rank problem. A new denoising model, which consists of the sinogram preprocessing for data fidelity and the nonlocal KBR term, is developed in this work. The proposed denoising model can better illustrate the generative mechanism of the mixed noise and the prior knowledge of the LDCT. Numerical results show that the proposed denoising model outperforms the state-of-the-art algorithms in terms of peak-signal-to-noise ratio (PSNR), feature similarity (FSIM), and normalized mean square error (NMSE).en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationJournal of computational mathematics, 2024, v. 42, no. 4, p. 1080-1108en_US
dcterms.isPartOfJournal of computational mathematicsen_US
dcterms.issued2024-
dc.identifier.scopus2-s2.0-85190593621-
dc.identifier.eissn1991-7139en_US
dc.description.validate202407 bcchen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumbera2975b-
dc.identifier.SubFormID48987-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextHong Kong Polytechnic University Internal Granten_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Lu_Nonlocal_Kronecker-basis-representation_Method.pdfPre-Published version9.75 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

65
Citations as of Apr 14, 2025

Downloads

38
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

1
Citations as of May 29, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.