Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/107740
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.contributorResearch Centre for Quantitative Finance en_US
dc.creatorFu, Gen_US
dc.creatorHager, PPen_US
dc.creatorHorst, Uen_US
dc.date.accessioned2024-07-10T08:46:46Z-
dc.date.available2024-07-10T08:46:46Z-
dc.identifier.issn0960-1627en_US
dc.identifier.urihttp://hdl.handle.net/10397/107740-
dc.language.isoenen_US
dc.publisherWiley-Blackwellen_US
dc.subjectAbsorptionen_US
dc.subjectMean-field gameen_US
dc.subjectNash equilibriumen_US
dc.subjectNonlinear integral equationsen_US
dc.subjectPortfolio liquidationen_US
dc.titleMean-field liquidation games with market drop-outen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage1123en_US
dc.identifier.epage1166en_US
dc.identifier.volume34en_US
dc.identifier.issue4en_US
dc.identifier.doi10.1111/mafi.12429en_US
dcterms.abstractWe consider a novel class of portfolio liquidation games with market drop-out (“absorption”). More precisely, we consider mean-field and finite player liquidation games where a player drops out of the market when her position hits zero. In particular, round-trips are not admissible. This can be viewed as a no statistical arbitrage condition. In a model with only sellers, we prove that the absorption condition is equivalent to a short selling constraint. We prove that equilibria (both in the mean-field and the finite player game) are given as solutions to a nonlinear higher-order integral equation with endogenous terminal condition. We prove the existence of a unique solution to the integral equation from which we obtain the existence of a unique equilibrium in the MFG and the existence of a unique equilibrium in the N-player game. We establish the convergence of the equilibria in the finite player games to the obtained mean-field equilibrium and illustrate the impact of the drop-out constraint on equilibrium trading rates.en_US
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationMathematical finance, Oct. 2024, v. 34, no. 4, p. 1123-1166en_US
dcterms.isPartOfMathematical financeen_US
dcterms.issued2024-10-
dc.identifier.scopus2-s2.0-85182463852-
dc.description.validate202407 bcwhen_US
dc.description.oaNot applicableen_US
dc.identifier.FolderNumbera2956-
dc.identifier.SubFormID48926-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextHong Kong Polytechnic Universityen_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2026-10-31en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2026-10-31
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

73
Citations as of Oct 6, 2025

SCOPUSTM   
Citations

1
Citations as of Dec 19, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.