Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/107740
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.contributorResearch Centre for Quantitative Finance en_US
dc.creatorFu, Gen_US
dc.creatorHager, PPen_US
dc.creatorHorst, Uen_US
dc.date.accessioned2024-07-10T08:46:46Z-
dc.date.available2024-07-10T08:46:46Z-
dc.identifier.issn0960-1627en_US
dc.identifier.urihttp://hdl.handle.net/10397/107740-
dc.language.isoenen_US
dc.publisherWiley-Blackwellen_US
dc.subjectAbsorptionen_US
dc.subjectMean-field gameen_US
dc.subjectNash equilibriumen_US
dc.subjectNonlinear integral equationsen_US
dc.subjectPortfolio liquidationen_US
dc.titleMean-field liquidation games with market drop-outen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage1123en_US
dc.identifier.epage1166en_US
dc.identifier.volume34en_US
dc.identifier.issue4en_US
dc.identifier.doi10.1111/mafi.12429en_US
dcterms.abstractWe consider a novel class of portfolio liquidation games with market drop-out (“absorption”). More precisely, we consider mean-field and finite player liquidation games where a player drops out of the market when her position hits zero. In particular, round-trips are not admissible. This can be viewed as a no statistical arbitrage condition. In a model with only sellers, we prove that the absorption condition is equivalent to a short selling constraint. We prove that equilibria (both in the mean-field and the finite player game) are given as solutions to a nonlinear higher-order integral equation with endogenous terminal condition. We prove the existence of a unique solution to the integral equation from which we obtain the existence of a unique equilibrium in the MFG and the existence of a unique equilibrium in the N-player game. We establish the convergence of the equilibria in the finite player games to the obtained mean-field equilibrium and illustrate the impact of the drop-out constraint on equilibrium trading rates.en_US
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationMathematical finance, Oct. 2024, v. 34, no. 4, p. 1123-1166en_US
dcterms.isPartOfMathematical financeen_US
dcterms.issued2024-10-
dc.identifier.scopus2-s2.0-85182463852-
dc.description.validate202407 bcwhen_US
dc.description.oaNot applicableen_US
dc.identifier.FolderNumbera2956-
dc.identifier.SubFormID48926-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextHong Kong Polytechnic Universityen_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2026-10-31en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2026-10-31
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

41
Citations as of Apr 14, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.