Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/107714
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Logistics and Maritime Studiesen_US
dc.creatorWang, Sen_US
dc.creatorTian, Xen_US
dc.date.accessioned2024-07-09T07:10:00Z-
dc.date.available2024-07-09T07:10:00Z-
dc.identifier.urihttp://hdl.handle.net/10397/107714-
dc.language.isoenen_US
dc.publisherMDPIen_US
dc.rights© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).en_US
dc.rightsThe following publication Wang S, Tian X. A Deficiency of the Predict-Then-Optimize Framework: Decreased Decision Quality with Increased Data Size. Mathematics. 2023; 11(15):3359.  is available at https://doi.org/10.3390/math11153359.en_US
dc.subjectData-driven optimizationen_US
dc.subjectLimited dataen_US
dc.subjectPredict-then-optimizeen_US
dc.subjectPrescriptive analyticsen_US
dc.titleA deficiency of the predict-then-optimize framework : decreased decision quality with increased data sizeen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume11en_US
dc.identifier.issue15en_US
dc.identifier.doi10.3390/math11153359en_US
dcterms.abstractThis paper presents an analysis of the decision quality of the predict-then-optimize (PO) framework, an extensively used prescriptive analytics framework in uncertain optimization problems. Our primary aim is to investigate whether an increase in data size invariably leads to better decisions within the PO framework. We focus our analysis on two contextual stochastic optimization problems—one with a non-linear objective function and the other with a linear objective function—under the PO framework. The novelty of our work lies in uncovering a previously unknown relationship: the decision quality can deteriorate with increasing data size in the non-linear case and exhibit non-monotonic behavior in the linear case. These findings highlight a potential pitfall of the PO framework and constitute our main contribution to the field, offering invaluable insights for both researchers and practitioners.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationMathematics, Aug. 2023, v. 11, no. 15, 3359en_US
dcterms.isPartOfMathematicsen_US
dcterms.issued2023-08-
dc.identifier.scopus2-s2.0-85167786087-
dc.identifier.eissn2227-7390en_US
dc.identifier.artn3359en_US
dc.description.validate202407 bcwhen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumbera2984-
dc.identifier.SubFormID49037-
dc.description.fundingSourceSelf-fundeden_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryCCen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
mathematics-11-03359-v2.pdf754.12 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

60
Citations as of Nov 10, 2025

Downloads

25
Citations as of Nov 10, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.