Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/107699
DC FieldValueLanguage
dc.contributorDepartment of Electrical and Electronic Engineeringen_US
dc.creatorHuan, Sen_US
dc.creatorLiu, Yen_US
dc.creatorYang, Yen_US
dc.creatorLaw, NFBen_US
dc.date.accessioned2024-07-09T07:09:54Z-
dc.date.available2024-07-09T07:09:54Z-
dc.identifier.issn0957-4174en_US
dc.identifier.urihttp://hdl.handle.net/10397/107699-
dc.language.isoenen_US
dc.publisherPergamon Pressen_US
dc.subjectCamera model identificationen_US
dc.subjectConvolutional neural networken_US
dc.subjectPassive forensicsen_US
dc.subjectPatch selectionen_US
dc.titleCamera model identification based on dual-path enhanced ConvNeXt network and patches selected by uniform local binary patternen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume241en_US
dc.identifier.doi10.1016/j.eswa.2023.122501en_US
dcterms.abstractWith the rapid advancement of multimedia technologies, there is a growing demand for reliable methods to verify image integrity. Camera model identification, a passive approach aiming to determine the specific capturing device model, has garnered considerable attention in the field of source camera forensics. In this paper, we first propose a novel patch selection method that enhances the diversity of training data by utilizing the uniform local binary pattern operator to reveal spatial textual information. Secondly, we introduce a complex dual-path enhanced ConvNeXt network for camera model identification, effectively leveraging the multi-frequency information present in the image. Notably, our network demonstrates the ability to learn camera model-related features without relying on a residual prediction module. Finally, extensive experimental results on both Dresden and Vision datasets shown that the proposed network outperforms several state-of-the-art methods in both teams of identification accuracy and computational efficiency.en_US
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationExpert systems with applications, 1 May 2024, v. 241, 122501en_US
dcterms.isPartOfExpert systems with applicationsen_US
dcterms.issued2024-05-01-
dc.identifier.scopus2-s2.0-85178475990-
dc.identifier.eissn1873-6793en_US
dc.identifier.artn122501en_US
dc.description.validate202407 bcwhen_US
dc.description.oaNot applicableen_US
dc.identifier.FolderNumbera2981-
dc.identifier.SubFormID49019-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNatural Science Foundation of Shandong Province; National Key Research and Development Program of China, NKRDPCen_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2026-05-01en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2026-05-01
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

82
Citations as of Nov 10, 2025

SCOPUSTM   
Citations

14
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

11
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.