Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/107686
DC FieldValueLanguage
dc.contributorDepartment of Mechanical Engineeringen_US
dc.creatorChen, Yen_US
dc.creatorWen, Xen_US
dc.creatorLan, Zen_US
dc.creatorGu, Zen_US
dc.creatorZhu, Jen_US
dc.creatorSu, Zen_US
dc.date.accessioned2024-07-09T03:54:50Z-
dc.date.available2024-07-09T03:54:50Z-
dc.identifier.issn0020-7403en_US
dc.identifier.urihttp://hdl.handle.net/10397/107686-
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.subjectAcoustic wavesen_US
dc.subjectElastic wavesen_US
dc.subjectElectromagnetic wavesen_US
dc.subjectPhononic crystalsen_US
dc.subjectPhotonic crystalsen_US
dc.subjectPhoxonic crystalsen_US
dc.titleDesign of second-order phoxonic topological insulators with customized bandgapsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume274en_US
dc.identifier.doi10.1016/j.ijmecsci.2024.109329en_US
dcterms.abstractSecond-order phononic and photonic topological insulators hosting topologically protected edge and corner states provide opportunities for the robust manipulation of elastic/acoustic and electromagnetic (EM) waves, respectively. Despite their potential, the development of second-order phoxonic topological insulators, which combine functionalities of second-order phononic and photonic topological insulators, remains largely unexplored. Herein, we design second-order phoxonic topological insulators (SPTI) with customized bandgaps. An inverse design approach is proposed to engineer phoxonic crystals (PCs) featuring customized odd-order phononic and photonic bandgaps simultaneously. Topological phase transition is induced by translating the primitive unit cell (UC) of the inverse-designed PC with half of the lattice constant horizontally and vertically. Thereafter, the SPTI is constructed by juxtaposing the primitive and translated UCs to form a corner between them. Multiple SPTIs, capable of manipulating both acoustic and EM waves, as well as those governing elastic and EM waves, are created. Our work paves the way for customized SPTIs with tailored bandgaps to support diverse phononic and photonic corner states. Meanwhile, the designed SPTIs also provide a platform to design the higher-order topological optomechanical devices.en_US
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationInternational journal of mechanical sciences, 15 July 2024, v. 274, 109329en_US
dcterms.isPartOfInternational journal of mechanical sciencesen_US
dcterms.issued2024-07-15-
dc.identifier.scopus2-s2.0-85191458334-
dc.identifier.eissn1879-2162en_US
dc.identifier.artn109329en_US
dc.description.validate202407 bcchen_US
dc.description.oaNot applicableen_US
dc.identifier.FolderNumbera2970-
dc.identifier.SubFormID48963-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2026-07-15en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2026-07-15
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

81
Citations as of Nov 10, 2025

SCOPUSTM   
Citations

11
Citations as of Dec 19, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.