Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/107685
DC FieldValueLanguage
dc.contributorDepartment of Mechanical Engineering-
dc.creatorChen, Y-
dc.creatorFan, L-
dc.creatorZhu, J-
dc.creatorAn, L-
dc.creatorSu, Z-
dc.date.accessioned2024-07-09T03:54:49Z-
dc.date.available2024-07-09T03:54:49Z-
dc.identifier.issn2211-2855-
dc.identifier.urihttp://hdl.handle.net/10397/107685-
dc.language.isoenen_US
dc.publisherElsevier BVen_US
dc.subjectCorner statesen_US
dc.subjectElastic metamaterialsen_US
dc.subjectElastic wavesen_US
dc.subjectPhononic crystalen_US
dc.subjectPhononic topological insulatoren_US
dc.subjectPiezoelectric energy harvestingen_US
dc.titleRainbow energy harvesting using a high-order topological meta-deviceen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume127-
dc.identifier.doi10.1016/j.nanoen.2024.109722-
dcterms.abstractWe present an innovative rainbow piezoelectric energy harvesting approach that harnesses the untapped potential of the topological meta-device for robust and efficient vibration energy trapping and conversion, from its theoretical rudiments, through design of the device to experimental validation. The rigorously designed meta-device features a series of second-order phononic topological insulators to host topologically protected corner states of different eigenfrequencies. By tailoring and tuning various corner sites, multi-frequency vibrations along a specially engineered channel that supports the edge states spanning these frequencies can be trapped into different corner sites. The vibrational energy is thus converted into electrical energy efficiently using strategically placed piezoelectric harvesters. Experimental results reveal the capability of the device in trapping targeted vibration, in which vibrational energy can be trapped into different corner sites in terms of its frequency, leading to an interesting rainbow energy conversion. This new approach not only implements high-efficiency energy harvesting but also offers enhanced design flexibilities for diverse applications by spatially separating vibrational frequencies.-
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationNano energy, Aug. 2024, v. 127, 109722-
dcterms.isPartOfNano energy-
dcterms.issued2024-08-
dc.identifier.scopus2-s2.0-85193201366-
dc.identifier.eissn2211-3282-
dc.identifier.artn109722-
dc.description.validate202407 bcch-
dc.identifier.FolderNumbera2970en_US
dc.identifier.SubFormID48962en_US
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2026-08-31en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2026-08-31
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

81
Citations as of Nov 10, 2025

SCOPUSTM   
Citations

15
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

10
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.