Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/107683
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.creatorMa, Len_US
dc.creatorQiao, Zen_US
dc.date.accessioned2024-07-09T03:54:48Z-
dc.date.available2024-07-09T03:54:48Z-
dc.identifier.issn0036-1429en_US
dc.identifier.urihttp://hdl.handle.net/10397/107683-
dc.language.isoenen_US
dc.publisherSociety for Industrial and Applied Mathematicsen_US
dc.rights© 2023 Society for Industrial and Applied Mathematicsen_US
dc.rightsCopyright © by SIAM. Unauthorized reproduction of this article is prohibited.en_US
dc.rightsThe following publication Ma, L., & Qiao, Z. (2023). An Energy Stable and Maximum Bound Principle Preserving Scheme for the Dynamic Ginzburg–Landau Equations under the Temporal Gauge. SIAM Journal on Numerical Analysis, 61(6), 2695-2717 is available at https://doi.org/10.1137/22M1539812.en_US
dc.subjectEnergy stabilityen_US
dc.subjectError estimateen_US
dc.subjectExponential time differencing methoden_US
dc.subjectGinzburg--Landau equationsen_US
dc.subjectMaximum bound principleen_US
dc.titleAn energy stable and maximum bound principle preserving scheme for the dynamic Ginzburg–Landau equations under the temporal gaugeen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage2695en_US
dc.identifier.epage2717en_US
dc.identifier.volume61en_US
dc.identifier.issue6en_US
dc.identifier.doi10.1137/22M1539812en_US
dcterms.abstractThis paper proposes a decoupled numerical scheme of the time-dependent Ginzburg–Landau equations under the temporal gauge. For the magnetic potential and the order parameter, the discrete scheme adopts the second type Nedélec element and the linear element for spatial discretization, respectively; and a linearized backward Euler method and the first order exponential time differencing method for time discretization, respectively. The maximum bound principle (MBP) of the order parameter and the energy dissipation law in the discrete sense are proved. The discrete energy stability and MBP preservation can guarantee the stability and validity of the numerical simulations, and further facilitate the adoption of an adaptive time-stepping strategy, which often plays an important role in long-time simulations of vortex dynamics, especially when the applied magnetic field is strong. An optimal error estimate of the proposed scheme is also given. Numerical examples verify the theoretical results of the proposed scheme and demonstrate the vortex motions of superconductors in an external magnetic field.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationSIAM journal on numerical analysis, 2023, v. 61, no. 6, p. 2695-2717en_US
dcterms.isPartOfSIAM journal on numerical analysisen_US
dcterms.issued2023-
dc.identifier.eissn1095-7170en_US
dc.description.validate202407 bcchen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumbera2969a-
dc.identifier.SubFormID48960-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryVoR alloweden_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
22m1539812.pdf2.42 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

85
Citations as of Nov 10, 2025

Downloads

106
Citations as of Nov 10, 2025

WEB OF SCIENCETM
Citations

8
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.