Please use this identifier to cite or link to this item:
http://hdl.handle.net/10397/107683
| DC Field | Value | Language |
|---|---|---|
| dc.contributor | Department of Applied Mathematics | en_US |
| dc.creator | Ma, L | en_US |
| dc.creator | Qiao, Z | en_US |
| dc.date.accessioned | 2024-07-09T03:54:48Z | - |
| dc.date.available | 2024-07-09T03:54:48Z | - |
| dc.identifier.issn | 0036-1429 | en_US |
| dc.identifier.uri | http://hdl.handle.net/10397/107683 | - |
| dc.language.iso | en | en_US |
| dc.publisher | Society for Industrial and Applied Mathematics | en_US |
| dc.rights | © 2023 Society for Industrial and Applied Mathematics | en_US |
| dc.rights | Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. | en_US |
| dc.rights | The following publication Ma, L., & Qiao, Z. (2023). An Energy Stable and Maximum Bound Principle Preserving Scheme for the Dynamic Ginzburg–Landau Equations under the Temporal Gauge. SIAM Journal on Numerical Analysis, 61(6), 2695-2717 is available at https://doi.org/10.1137/22M1539812. | en_US |
| dc.subject | Energy stability | en_US |
| dc.subject | Error estimate | en_US |
| dc.subject | Exponential time differencing method | en_US |
| dc.subject | Ginzburg--Landau equations | en_US |
| dc.subject | Maximum bound principle | en_US |
| dc.title | An energy stable and maximum bound principle preserving scheme for the dynamic Ginzburg–Landau equations under the temporal gauge | en_US |
| dc.type | Journal/Magazine Article | en_US |
| dc.identifier.spage | 2695 | en_US |
| dc.identifier.epage | 2717 | en_US |
| dc.identifier.volume | 61 | en_US |
| dc.identifier.issue | 6 | en_US |
| dc.identifier.doi | 10.1137/22M1539812 | en_US |
| dcterms.abstract | This paper proposes a decoupled numerical scheme of the time-dependent Ginzburg–Landau equations under the temporal gauge. For the magnetic potential and the order parameter, the discrete scheme adopts the second type Nedélec element and the linear element for spatial discretization, respectively; and a linearized backward Euler method and the first order exponential time differencing method for time discretization, respectively. The maximum bound principle (MBP) of the order parameter and the energy dissipation law in the discrete sense are proved. The discrete energy stability and MBP preservation can guarantee the stability and validity of the numerical simulations, and further facilitate the adoption of an adaptive time-stepping strategy, which often plays an important role in long-time simulations of vortex dynamics, especially when the applied magnetic field is strong. An optimal error estimate of the proposed scheme is also given. Numerical examples verify the theoretical results of the proposed scheme and demonstrate the vortex motions of superconductors in an external magnetic field. | en_US |
| dcterms.accessRights | open access | en_US |
| dcterms.bibliographicCitation | SIAM journal on numerical analysis, 2023, v. 61, no. 6, p. 2695-2717 | en_US |
| dcterms.isPartOf | SIAM journal on numerical analysis | en_US |
| dcterms.issued | 2023 | - |
| dc.identifier.eissn | 1095-7170 | en_US |
| dc.description.validate | 202407 bcch | en_US |
| dc.description.oa | Version of Record | en_US |
| dc.identifier.FolderNumber | a2969a | - |
| dc.identifier.SubFormID | 48960 | - |
| dc.description.fundingSource | RGC | en_US |
| dc.description.pubStatus | Published | en_US |
| dc.description.oaCategory | VoR allowed | en_US |
| Appears in Collections: | Journal/Magazine Article | |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| 22m1539812.pdf | 2.42 MB | Adobe PDF | View/Open |
Page views
85
Citations as of Nov 10, 2025
Downloads
106
Citations as of Nov 10, 2025
WEB OF SCIENCETM
Citations
8
Citations as of Dec 18, 2025
Google ScholarTM
Check
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.



