Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/107681
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.contributorResearch Institute for Smart Energyen_US
dc.creatorLi, Xen_US
dc.creatorQiao, Zen_US
dc.date.accessioned2024-07-09T03:54:48Z-
dc.date.available2024-07-09T03:54:48Z-
dc.identifier.issn1064-8275en_US
dc.identifier.urihttp://hdl.handle.net/10397/107681-
dc.language.isoenen_US
dc.publisherSociety for Industrial and Applied Mathematicsen_US
dc.rights© 2024 Society for Industrial and Applied Mathematicsen_US
dc.rightsCopyright © by SIAM. Unauthorized reproduction of this article is prohibited.en_US
dc.rightsThe following publication Li, X., & Qiao, Z. (2024). A Second-Order, Linear, \(\boldsymbol{L^\infty}\)-Convergent, and Energy Stable Scheme for the Phase Field Crystal Equation. SIAM Journal on Scientific Computing, 46(1), A429-A451 is available at https://doi.org/10.1137/23M1552164.en_US
dc.subjectConvergence in 𝑳∞en_US
dc.subjectEnergy stabilityen_US
dc.subjectPhase field crystal equationen_US
dc.subjectSecond orderen_US
dc.titleA second-order, linear, 𝑳∞-convergent, and energy stable scheme for the phase field crystal equationen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spageA429en_US
dc.identifier.epageA451en_US
dc.identifier.volume46en_US
dc.identifier.issue1en_US
dc.identifier.doi10.1137/23M1552164en_US
dcterms.abstractIn this paper, we present a second-order accurate and linear numerical scheme for the phase field crystal equation and prove its convergence in the discrete L\infty sense. The key ingredient of the error analysis is to justify the boundedness of the numerical solution, so that the nonlinear term, treated explicitly in the scheme, can be bounded appropriately. Benefiting from the existence of the sixth-order dissipation term in the model, we first estimate the discrete H2 norm of the numerical error. The error estimate in the supremum norm is then obtained by the Sobolev embedding, so that the uniform bound of the numerical solution is available. We also show the mass conservation and the energy stability in the discrete setting. The proposed scheme is linear with constant coefficients so that it can be solved efficiently via some fast algorithms. Numerical experiments are conducted to verify the theoretical results, and long-time simulations in two- and three-dimensional spaces demonstrate the satisfactory and high effectiveness of the proposed numerical scheme.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationSIAM journal on scientific computing, 2024, v. 46, no. 1, p. A429-A451en_US
dcterms.isPartOfSIAM journal on scientific computingen_US
dcterms.issued2024-
dc.identifier.scopus2-s2.0-85191575138-
dc.identifier.eissn1095-7197en_US
dc.description.validate202407 bcchen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumbera2969a, a3885b-
dc.identifier.SubFormID48957, 51549-
dc.description.fundingSourceRGCen_US
dc.description.fundingTextThe CAS AMSS-PolyU Joint Laboratory of Applied Mathematicsen_US
dc.description.fundingTextThe Hong Kong Polytechnic University grant 4-ZZLSen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryVoR alloweden_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
23m1552164.pdf7.7 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

50
Citations as of Apr 13, 2025

Downloads

102
Citations as of Apr 13, 2025

SCOPUSTM   
Citations

14
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

6
Citations as of Jun 5, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.