Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/107676
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.creatorBo, Len_US
dc.creatorWang, Sen_US
dc.creatorYu, Xen_US
dc.date.accessioned2024-07-09T03:54:46Z-
dc.date.available2024-07-09T03:54:46Z-
dc.identifier.issn1674-7283en_US
dc.identifier.urihttp://hdl.handle.net/10397/107676-
dc.language.isoenen_US
dc.publisherScience in China Pressen_US
dc.rights© Science China Press 2024en_US
dc.rightsThis is the accepted version of the article: Bo, L., Wang, S. & Yu, X. Mean field game of optimal relative investment with jump risk. Sci. China Math. 67, 1159–1188 (2024). https://doi.org/10.1007/s11425-021-2109-3. The original publication is available at www.scichina.com and www.springerlink.com.en_US
dc.subjectApproximate Nash equilibriumen_US
dc.subjectContagious jump risken_US
dc.subjectMean field equilibriumen_US
dc.subjectMean field game with jumpsen_US
dc.subjectRelative performanceen_US
dc.titleMean field game of optimal relative investment with jump risken_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage1159en_US
dc.identifier.epage1188en_US
dc.identifier.volume67en_US
dc.identifier.issue5en_US
dc.identifier.doi10.1007/s11425-021-2109-3en_US
dcterms.abstractIn this paper, we study the n-player game and the mean field game under the constant relative risk aversion relative performance on terminal wealth, in which the interaction occurs by peer competition. In the model with n agents, the price dynamics of underlying risky assets depend on a common noise and contagious jump risk modeled by a multi-dimensional nonlinear Hawkes process. With a continuum of agents, we formulate the mean field game problem and characterize a deterministic mean field equilibrium in an analytical form under some conditions, allowing us to investigate some impacts of model parameters in the limiting model and discuss some financial implications. Moreover, based on the mean field equilibrium, we construct an approximate Nash equilibrium for the n-player game when n is sufficiently large. The explicit order of the approximation error is also derived.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationScience China. Mathematics, May 2024, v. 67, no. 5, p. 1159-1188en_US
dcterms.isPartOfScience China. Mathematicsen_US
dcterms.issued2024-05-
dc.identifier.scopus2-s2.0-85188089731-
dc.identifier.eissn1869-1862en_US
dc.description.validate202407 bcchen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumbera2965b-
dc.identifier.SubFormID48944-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThe Hong Kong Polytechnic University research grant no. P0031417 and no. P0039251en_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Bo_Mean_Field_Game.pdfPre-Published version1.8 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

102
Citations as of Apr 14, 2025

Downloads

54
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

7
Citations as of Nov 28, 2025

WEB OF SCIENCETM
Citations

4
Citations as of Mar 20, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.