Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/107674
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.creatorWang, Wen_US
dc.creatorYu, Xen_US
dc.creatorZhou, Xen_US
dc.date.accessioned2024-07-09T03:54:45Z-
dc.date.available2024-07-09T03:54:45Z-
dc.identifier.urihttp://hdl.handle.net/10397/107674-
dc.language.isoenen_US
dc.publisherSociety for Industrial and Applied Mathematicsen_US
dc.rights© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023en_US
dc.rightsThis version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use (https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms), but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1007/s00245-023-10079-1.en_US
dc.subjectBarrier strategyen_US
dc.subjectChapter 11 bankruptcyen_US
dc.subjectDe Finetti’s optimal dividenden_US
dc.subjectParisian ruin with exponential delayen_US
dc.subjectScale functionsen_US
dc.subjectSpectrally negative Lévy processen_US
dc.titleOn optimality of barrier dividend control under endogenous regime switching with application to chapter 11 bankruptcyen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume89en_US
dc.identifier.issue1en_US
dc.identifier.doi10.1007/s00245-023-10079-1en_US
dcterms.abstractMotivated by recent developments in risk management based on the U.S. bankruptcy code, we revisit the De Finetti’s optimal dividend problem by incorporating the reorganization process and regulator’s intervention documented in Chapter 11 bankruptcy. The resulting surplus process, bearing financial stress towards the more subtle concept of bankruptcy, corresponds to a non-standard spectrally negative Lévy process with endogenous regime switching. Some explicit expressions of the expected present values under a barrier strategy, new to the literature, are established in terms of scale functions. With the help of these expressions, when the tail of the Lévy measure is log-convex, the optimal dividend control is shown to be of the barrier type and the associated optimal barrier can be identified using scale functions of spectrally negative Lévy processes. Some financial implications are also discussed in an illustrative example.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationApplied mathematics and optimization, Feb. 2024, v. 89, no. 1, 13en_US
dcterms.isPartOfSIAM journal on financial mathematicsen_US
dcterms.issued2024-02-
dc.identifier.scopus2-s2.0-85178662699-
dc.identifier.eissn1945-497Xen_US
dc.identifier.artn13en_US
dc.description.validate202407 bcchen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumbera2965a-
dc.identifier.SubFormID48945-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextthe Hong Kong Polytechnic University research grant no. P0031417en_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Wang_Optimality_Barrier_Dividend.pdfPre-Published version926.48 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

41
Citations as of Apr 14, 2025

Downloads

2
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

5
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

2
Citations as of Jan 9, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.