Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/107636
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Civil and Environmental Engineeringen_US
dc.creatorHuo, XSen_US
dc.creatorLiu, THen_US
dc.creatorChen, ZWen_US
dc.creatorLi, WHen_US
dc.creatorGao, HRen_US
dc.creatorXu, Ben_US
dc.date.accessioned2024-07-05T07:15:14Z-
dc.date.available2024-07-05T07:15:14Z-
dc.identifier.issn1226-6116en_US
dc.identifier.urihttp://hdl.handle.net/10397/107636-
dc.language.isoenen_US
dc.publisherTechno-Pressen_US
dc.rightsCopyright © 2023 Techno-Press, Ltd.en_US
dc.rightsThis is the accepted version of the following article: Huo, X. S., Liu, T. H., Chen, Z. W., Li, W. H., Gao, H. R., & Xu, B. (2023). Comparison of RANS, URANS, SAS and IDDES for the prediction of train crosswind characteristics. Wind and Structures, 37(4), 303-314, which has been published in https://doi.org/10.12989/was.2023.37.4.303.en_US
dc.subjectCrosswinden_US
dc.subjectHigh-speed trainen_US
dc.subjectIDDESen_US
dc.subjectRANSen_US
dc.subjectSASen_US
dc.subjectURANSen_US
dc.titleComparison of RANS, URANS, SAS and IDDES for the prediction of train crosswind characteristicsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage303en_US
dc.identifier.epage314en_US
dc.identifier.volume37en_US
dc.identifier.issue4en_US
dc.identifier.doi10.12989/was.2023.37.4.303en_US
dcterms.abstractIn this study, two steady RANS turbulence models (SST k–ω and Realizable k–ε) and four unsteady turbulence models (URANS SST k–ω and Realizable k–ε, SST–SAS, and SST–IDDES) are evaluated with respect to their capacity to predict crosswind characteristics on high-speed trains (HSTs). All of the numerical simulations are compared with the wind tunnel values and LES results to ensure the accuracy of each turbulence model. Specifically, the surface pressure distributions, time-averaged aerodynamic coefficients, flow fields, and computational cost are studied to determine the suitability of different models. Results suggest that the predictions of the pressure distributions and aerodynamic forces obtained from the steady and transient RANS models are almost the same. In particular, both SAS and IDDES exhibits similar predictions with wind tunnel test and LES, therefore, the SAS model is considered an attractive alternative for IDDES or LES in the crosswind study of trains. In addition, if the computational cost needs to be significantly reduced, the RANS SST k–ω model is shown to provide relatively reasonable results for the surface pressures and aerodynamic forces. As a result, the RANS SST k–ω model might be the most appropriate option for the expensive aerodynamic optimizations of trains using machine learning (ML) techniques because it balances solution accuracy and resource consumption.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationWind and structures, Oct. 2023, v. 37, no. 4, p. 303-314en_US
dcterms.isPartOfWind and structuresen_US
dcterms.issued2023-10-
dc.identifier.scopus2-s2.0-85175723306-
dc.identifier.eissn1598-6225en_US
dc.description.validate202407 bcchen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumbera2944-
dc.identifier.SubFormID48879-
dc.description.fundingSourceSelf-fundeden_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Huo_Comparison_RANS_URANS.pdfPre-Published version1.98 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

160
Citations as of Oct 6, 2025

Downloads

282
Citations as of Oct 6, 2025

SCOPUSTM   
Citations

9
Citations as of Dec 19, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.