Please use this identifier to cite or link to this item:
http://hdl.handle.net/10397/107565
| Title: | Optimizing Cu⁺-Cu⁰ synergy by operando tracking of Cu₂O nanocatalysts during the electrochemical CO₂ reduction reaction | Authors: | Zhang, H Wang, Y Lei, Q Tang, C Yin, J Lo, TWB |
Issue Date: | 15-Dec-2023 | Source: | Nano energy, 15 Dec. 2023, v. 118, 108920 | Abstract: | Tracking the evolution of electrocatalysts over oxide-derived Cu materials during the electrochemical CO2 reduction reaction (eCO2RR) is pivotal for optimizing the product selectivity toward desired multi-carbon (C2+) products. However, the identification of the true intermediate active catalyst is still unclear. Here, we adopted a multi-modal characterization approach, primarily based on operando powder X-ray diffraction and operando micro-Raman spectroscopy, to study three Cu2O precursors with different morphologies, namely, octahedral (O-), cubic (C-), and nanowire (N-Cu2O). This multi-modal approach allows us to investigate the Cu2O nano-crystallites from the interface to the bulk structure. The results suggested notably different electrochemical reduction kinetics. 26.1% O-Cu2O and 90.6% C-Cu2O were reduced to much smaller Cu(0) domains after two hours of time-on-stream; N-Cu2O, with notably higher surface-to-volume ratio, was completely reduced within 45 min of time-on-stream. We accordingly observed a structure-reactivity correlation where a more intricate Cu2O/Cu grain network (and hence Cu+-Cu0 junctions) as observed in O-Cu2O, can lead to stable and quantitative production of ethylene at the Faradic efficiency of around 40% (in stark contrast to those of C- and N-Cu2O). The synergy between the Cu2O and Cu phases was also verified by density functional theory calculations. The upshifted D-band center of Cu2O/Cu in O-Cu2O is the most conducive toward the production of ethylene, whereas the downshifted D-band center of Cu2O/Cu in C-Cu2O leads to a decreased production of ethylene in the expense of unwanted production of hydrogen. We envisage that system optimization and design of new catalysts will become more facile and efficient using a related multi-modal operando characterization philosophy. | Keywords: | ECO2RR Morphology investigation Multi-modal characterization Operando characterization Oxide-derived copper |
Publisher: | Elsevier | Journal: | Nano energy | ISSN: | 2211-2855 | EISSN: | 2211-3282 | DOI: | 10.1016/j.nanoen.2023.108920 |
| Appears in Collections: | Journal/Magazine Article |
Show full item record
Page views
113
Citations as of Nov 10, 2025
SCOPUSTM
Citations
21
Citations as of Dec 19, 2025
WEB OF SCIENCETM
Citations
21
Citations as of Dec 18, 2025
Google ScholarTM
Check
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.



