Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/107543
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorSchool of Optometryen_US
dc.contributorResearch Centre for SHARP Visionen_US
dc.creatorChen, Xen_US
dc.creatorXu, Pen_US
dc.creatorLi, Yen_US
dc.creatorZhang, Wen_US
dc.creatorSong, Fen_US
dc.creatorHe, Men_US
dc.creatorShi, Den_US
dc.date.accessioned2024-07-03T04:31:38Z-
dc.date.available2024-07-03T04:31:38Z-
dc.identifier.urihttp://hdl.handle.net/10397/107543-
dc.language.isoenen_US
dc.publisherCell Pressen_US
dc.rights© 2024 The Authors. Published by Elsevier Inc.en_US
dc.rightsThis is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).en_US
dc.rightsThe following publication Chen, X., Xu, P., Li, Y., Zhang, W., Song, F., He, M., & Shi, D. (2024). ChatFFA: An ophthalmic chat system for unified vision-language understanding and question answering for fundus fluorescein angiography. iScience, 27(7), 110021 is available at https://doi.org/10.1016/j.isci.2024.110021.en_US
dc.subjectFundus fluorescein angiographyen_US
dc.subjectGenerative artificial intelligenceen_US
dc.subjectMedical report generationen_US
dc.subjectSynthetic dataen_US
dc.subjectVisual question answeringen_US
dc.titleChatFFA : an ophthalmic chat system for unified vision-language understanding and question answering for fundus fluorescein angiographyen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume27en_US
dc.identifier.issue7en_US
dc.identifier.doi10.1016/j.isci.2024.110021en_US
dcterms.abstractExisting automatic analysis of fundus fluorescein angiography (FFA) images faces limitations, including a predetermined set of possible image classifications and being confined to text-based question-answering (QA) approaches. This study aims to address these limitations by developing an end-to-end unified model that utilizes synthetic data to train a visual question-answering model for FFA images. To achieve this, we employed ChatGPT to generate 4,110,581 QA pairs for a large FFA dataset, which encompassed a total of 654,343 FFA images from 9,392 participants. We then fine-tuned the Bootstrapping Language-Image Pre-training (BLIP) framework to enable simultaneous handling of vision and language. The performance of the fine-tuned model (ChatFFA) was thoroughly evaluated through automated and manual assessments, as well as case studies based on an external validation set, demonstrating satisfactory results. In conclusion, our ChatFFA system paves the way for improved efficiency and feasibility in medical imaging analysis by leveraging generative large language models. Graphical abstract: [Figure not available: see fulltext.]en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationiScience, 19 July 2024, v. 27, no. 7, 110021en_US
dcterms.isPartOfiScienceen_US
dcterms.issued2024-07-19-
dc.identifier.eissn2589-0042en_US
dc.identifier.artn110021en_US
dc.description.validate202407 bcchen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumbera2925-
dc.identifier.SubFormID48777-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextStart-up Fund for RAPs under the Strategic Hiring Schemeen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryCCen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
1-s2.0-S258900422401246X-main.pdf4.5 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

55
Citations as of Apr 14, 2025

Downloads

19
Citations as of Apr 14, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.