Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/107485
DC FieldValueLanguage
dc.contributorDepartment of Industrial and Systems Engineering-
dc.contributorResearch Institute for Advanced Manufacturing-
dc.creatorLiu, Qen_US
dc.creatorRen, Cen_US
dc.creatorSong, Zen_US
dc.creatorDan, Xen_US
dc.creatorJu, Jen_US
dc.creatorYang, Ten_US
dc.creatorNi, Sen_US
dc.creatorLu, Jen_US
dc.creatorLiu, Len_US
dc.creatorPan, Jen_US
dc.creatorChen, Zen_US
dc.date.accessioned2024-06-27T01:33:45Z-
dc.date.available2024-06-27T01:33:45Z-
dc.identifier.issn2214-8604en_US
dc.identifier.urihttp://hdl.handle.net/10397/107485-
dc.language.isoenen_US
dc.publisherElsevier BVen_US
dc.subjectCellular microstructureen_US
dc.subjectCu alloyen_US
dc.subjectElectrical conductivityen_US
dc.subjectLaser powder bed fusionen_US
dc.subjectMechanical propertyen_US
dc.titleHigh-strength and high-conductivity additively manufactured Cu-O alloy enabled by cellular microstructureen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume88en_US
dc.identifier.doi10.1016/j.addma.2024.104244en_US
dcterms.abstractPrinting Cu alloys with simultaneously high strength and high electrical conductivity by laser powder bed fusion remains a challenge. In conventionally manufactured Cu alloys, nanoprecipitates form through alloying elements to impart significant strengthening effects while having a lesser impact on electrical conductivity. However, the ultrahigh cooling rate of laser powder bed fusion promotes the supersaturated solid solution of alloying elements, resulting in severe lattice distortion in the Cu matrix and a significant compromise in electrical conductivity. Therefore, it is vital to select Cu alloying elements that substantially prevent the formation of a supersaturated solid solution in laser powder bed fusion to achieve outstanding strength while maintaining sufficient electrical conductivity. In this study, we fabricated a Cu-O alloy with high strength (491.6 MPa) and high electrical conductivity (68.0 % IACS) using laser powder bed fusion. The alloy features a cellular microstructure in which Cu2O nanoprecipitates are configured orderly as the cellular boundary. This cellular microstructure can promote strength by impeding dislocation motion and maintain a high electrical conductivity by preserving a longer free path for conductive electrons. This study explores the potential of combining the alloy composition and extreme process conditions of laser powder bed fusion to provoke unique microstructures and overcome the dilemma between strength and electrical conductivity in Cu alloys.-
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationAdditive manufacturing, 25 May 2024, v. 88, 104244en_US
dcterms.isPartOfAdditive manufacturingen_US
dcterms.issued2024-05-25-
dc.identifier.scopus2-s2.0-85195324152-
dc.identifier.eissn2214-7810en_US
dc.identifier.artn104244en_US
dc.description.validate202406 bcch-
dc.identifier.FolderNumbera2891-
dc.identifier.SubFormID48661-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2026-05-25en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2026-05-25
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

27
Citations as of Oct 13, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.