Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/107475
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of English and Communicationen_US
dc.creatorWang, Wen_US
dc.creatorNgai, Jen_US
dc.date.accessioned2024-06-25T04:31:15Z-
dc.date.available2024-06-25T04:31:15Z-
dc.identifier.issn2213-1272en_US
dc.identifier.urihttp://hdl.handle.net/10397/107475-
dc.language.isoenen_US
dc.publisherJohn Benjamins Publishing Co.en_US
dc.rights© John Benjamins Publishing Companyen_US
dc.rightsThis is the accepted version of the publication Wang, W., & Ngai, J. (2025). “You look like my 14-year-old daughter”. Journal of Language Aggression and Conflict, 13(2), 155–181. The Version of Record is available online at: https://doi.org/10.1075/jlac.00090.wan.en_US
dc.subjectHashtag feminismen_US
dc.subjectIndirect sexismen_US
dc.subjectOvert sexismen_US
dc.subjectSexist languageen_US
dc.subjectSexist markersen_US
dc.subjectStereotypeen_US
dc.title“You look like my 14-year-old daughter” : a corpus-based study of sexist language in everyday sexism Twitter storiesen_US
dc.typeJournal/Magazine Articleen_US
dc.description.otherinformationTitle on author's file: “You Look like My 14-Year-Old Daughter”: A Corpus-Based Study of Sexist Language in #everydaysexism Twitter Storiesen_US
dc.identifier.spage155en_US
dc.identifier.epage181en_US
dc.identifier.volume13en_US
dc.identifier.issue2en_US
dc.identifier.doi10.1075/jlac.00090.wanen_US
dcterms.abstractThe main purpose of this corpus-based study is to examine the different types of sexist language women are subjected to in their daily interactions with men, together with their hidden ideologies. To this end, we analysed a total of 1,118 English tweets posted on the hashtag #everydaysexism on Twitter over a year. Results indicate that women experience both overt and indirect verbal aggression in different domains of life, expressed through a range of sexist linguistic markers, and that such aggressions often reflect the users’ beliefs and values about men and women. By using a category-based model to examine a feminist narrative hashtag where women’s experiences of sexism are shared, our study offers a robust and principled approach to conducting a corpus-based, cross-domain discourse analysis of sexism in daily communication.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationJournal of language aggression and conflict, 2025, v. 13, no. 2, p. 155-181en_US
dcterms.isPartOfJournal of language aggression and conflicten_US
dcterms.issued2025-
dc.identifier.scopus2-s2.0-85187917597-
dc.identifier.eissn2213-1280en_US
dc.description.validate202406 bcchen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumbera2882-
dc.identifier.SubFormID48637-
dc.description.fundingSourceSelf-fundeden_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Wang_You_Look_Like.pdfPre-Published version2.36 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

88
Last Week
0
Last month
Citations as of Oct 5, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.