Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/107455
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.creatorZhang, Sen_US
dc.creatorZhang, Gen_US
dc.date.accessioned2024-06-24T07:02:51Z-
dc.date.available2024-06-24T07:02:51Z-
dc.identifier.issn0005-1098en_US
dc.identifier.urihttp://hdl.handle.net/10397/107455-
dc.language.isoenen_US
dc.publisherPergamon Pressen_US
dc.rights© 2023 Elsevier Ltd. All rights reserved.en_US
dc.rights© 2023. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.rightsThe following publication Zhang, S., & Zhang, G. (2023). Attraction domain analysis for steady states of Markovian open quantum systems. Automatica, 157, 111263 is available at https://doi.org/10.1016/j.automatica.2023.111263.en_US
dc.subjectAttraction domainen_US
dc.subjectLindblad master equationsen_US
dc.subjectOpen quantum systemsen_US
dc.subjectSteady stateen_US
dc.titleAttraction domain analysis for steady states of Markovian open quantum systemsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume157en_US
dc.identifier.doi10.1016/j.automatica.2023.111263en_US
dcterms.abstractThis article concerns the attraction domain analysis for steady states in Markovian open quantum systems, which are mathematically described by Lindblad master equations. The central question is proposed as: given a steady state, which part of the state space of density operators does it attract and which part does it not attract? We answer this question by presenting necessary and sufficient conditions that determine, for any steady state and initial state, whether the latter belongs to the attraction domain of the former. Furthermore, it is found that the attraction domain of a steady state is the intersection between the set of density operators and an affine space which contains that steady state. Moreover, we show that steady states without uniqueness in the set of density operators have attraction domains with measure zero under some translation invariant and locally finite measures. Finally, an example regarding an open Heisenberg XXZ spin chain is presented. We pick two of the system’s steady states with different magnetization profiles and analyse their attraction domains.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationAutomatica, Nov. 2023, v. 157, 111263en_US
dcterms.isPartOfAutomaticaen_US
dcterms.issued2023-11-
dc.identifier.scopus2-s2.0-85169600723-
dc.identifier.eissn1873-2836en_US
dc.identifier.artn111263en_US
dc.description.validate202406 bcchen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumbera2871-
dc.identifier.SubFormID48607-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Zhang_Attraction_Domain_Analysis.pdfPre-Published version1.02 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

64
Citations as of Nov 10, 2025

SCOPUSTM   
Citations

1
Citations as of Nov 28, 2025

WEB OF SCIENCETM
Citations

1
Citations as of Dec 4, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.