Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/107442
DC FieldValueLanguage
dc.contributorDepartment of Mechanical Engineering-
dc.creatorLi, Aen_US
dc.creatorZhang, Xen_US
dc.creatorXu, Zen_US
dc.creatorWu, Men_US
dc.date.accessioned2024-06-24T07:02:44Z-
dc.date.available2024-06-24T07:02:44Z-
dc.identifier.issn1385-8947en_US
dc.identifier.urihttp://hdl.handle.net/10397/107442-
dc.language.isoenen_US
dc.publisherElsevier BVen_US
dc.subject3-(1-Pyridinio)-1-propanesulfonateen_US
dc.subjectElectrode-electrolyte interfaceen_US
dc.subjectElectrolyte additiveen_US
dc.subjectRechargeable aqueous Zn batteriesen_US
dc.subjectZn anodeen_US
dc.titleNon-sacrificial additive regulated electrode-electrolyte interface enables long-life, deeply rechargeable aqueous Zn anodesen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume494en_US
dc.identifier.doi10.1016/j.cej.2024.153240en_US
dcterms.abstractRechargeable aqueous Zn batteries (RAZBs) offer a promising solution for safe and cost-effective energy storage. However, practical applications of this type of battery are hindered by dendrite formation and side reactions, which primarily stem from the unstable Zn electrode–electrolyte interface (EEI). Here, we report 3-(1-pyridinio)-1-propanesulfonate (PPS) as a novel EEI regulator to tackle these critical issues. Theoretical calculations and experimental results reveal that PPS molecules can be preferentially adsorbed on the Zn anode surface and construct a lean-water EEI, which regulates uniform Zn plating/stripping and minimizes interfacial side reactions. As a result, the addition of PPS enables a Zn//Cu asymmetric cell to achieve an ultra-high Coulombic efficiency of 99.88 % and a lifespan of over 4,000 cycles (around half a year), far exceeding that with a conventional electrolyte (99.65 % and 210 cycles). Remarkably, even at 20 mA cm−2 and a high depth of discharge of 70 %, the Zn//Zn battery using the new electrolyte can still maintain an impressive cycling life of over 250 h. More importantly, the implementation of the designed electrolyte in various Zn-based full cells yields exceptional capacity retention and lifespan. This work underscores the importance of EEI regulation in advancing RAZB technology and offers a simple yet effective strategy for enhancing the stability and reversibility of Zn anodes, which represents a key step toward realizing the full potential of RAZBs for next-generation energy storage.-
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationChemical engineering journal, 15 Aug. 2024, v. 494, 153240en_US
dcterms.isPartOfChemical engineering journalen_US
dcterms.issued2024-08-15-
dc.identifier.eissn1873-3212en_US
dc.identifier.artn153240en_US
dc.description.validate202406 bcch-
dc.identifier.FolderNumbera2860-
dc.identifier.SubFormID48584-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2026-08-15en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2026-08-15
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

4
Citations as of Jun 30, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.